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The initial value problem for the sine-Gordon equation is solved by the inverse-scat-
tering method.

&v, /at = (i/4&)(v, cosu+ v, sinu),

&v, /&t = (i/4&)(v, sinu —v, cosu),

(7}

(6)

ensures that the eigenvalue f is independent of t,
provided u(x, t) evolves according to (3). The
scattering data (eigenvalues, reflection coeffi-
cients, etc.) can be found and the potential q(x, t)
can then be determined for all time by the in-
verse -scattering method.

The sine-Gordon equation,

8'u/8T' —&'u/BX'+ sin(u) = 0,

arises in many branches of mathematical phys-
ics.' ' Special solutions known as kinks,

u(X, T) =4tan '(exp[(X —UT)/(1 —U'}'"]), (2)

have been known for some time and "multikink"
solutions have also been found. ' '

Equation (1) can be solved by the inverse-scat-
tering method. It is convenient to write the sine-
Gordon equation (1) as

&'u/Bx St = sin(u),

by use of the transformation

x = a(X+ T}, t = ,'(X - T)-
Consider the following linear eigenvalue prob-
lem'

sv~/ax+ 'lt v~ = cj(x, t)v2,

ev, /Bx —igv, = —q(x, t)v„

where t is the eigenvalue q(x, t) = .—2»(x, t}/ox,
and u(x, t) -0 (or a multiple of 2m) as x- +~ and
is sufficiently well behaved. By cross differentia-
tion, a particular choice for the t dependence of
v, (x, t) and v, (x, t),

The results of Zakharov and Shabat' directly
apply and allow us to reconstruct q(x, t)!

Following Ref. 8, we define the functions y and
as solutions of Eqs. (5) and (6) with the asymp-

totic form

e '~" as g- —~ ImP~0
0

In addition, we note that if

is a solution of (5) and (6}, then a linearly inde-
pendent solution i.s given by

(10)

The pair of solutions ( and 17forms a complete
system of solutions, and therefore we can write

y(x, g, ) = cP(x, tq) (12}

The t dependence of a(t'), b($), and c,. is found
from (7) and (8) to be

a(g) = a,(&), b($) = b, ($) exp(- it/2$),

c,(t,) = c,, exp( —it/2g, .).
The solution of. the inverse problem' is given

a($) can be analytically continued to the upper
half-plane Im(gg) &0 and, in particular, the zeros
t', (j= 1, ... , Ã) of a(g) in the upper half-plane are
the discrete eigenvalues of (5) and (6). At these
values we have
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by the integral equation

K(x, y) = B*(x+y) —f„f„B*(y+z)B(k+ z}K(x,0) dz dk, (14)

B(x)=2 exp(i&x}d( —i Qc,. exp{ig, x)
~ g(() hl

2W ~Q j=l

In this case, since u is real it follows directly that B(x) is real. The potential q(x, t) is given by

q(x, t}= .'B-u(-x, t)/Bx=-2K(x, x),

and the solution

u(x, t) = u(t, t) + 4 f, K(y, y; t) dy.

(16)

Now let us consider how to determine the scattering data from the initial-value (T= 0) problem. Re-
writing Eqs. (5)-(8) in real space and time (X, T) variables, we have

Beg if i 1 8Q OQ

BX 2 8$ ' 8$ 4 BX BT
+ COSQ 5~ + SlnQ — —+ — 5o~

&v, i . 1 Bu Ou i) i
Bg 8( 4 eX &T ' 2 Bg

—slnQ+ ——+ 5~ + —— COSQ 52~

85g i) i 8Q BQ
COSQ 5g — 81nQ+ + 52~BT 2 8$ ',

, 8$ 4 8X BT

852 g . i BQ ~Q lg f,
SlnQ+

4
+ ~,5 j 2

+
8

COSQ 52-

Again it can be directly verified that &f/&T= at/BX=0. Define the functions 4 and and 4 which ap-
proach the following asymptotic values. At any time T,

1 i 1 i 1
exp ——t -—X ——f+—T asX- —~, Imp~ 0,

0 2 4g 2 4t

0 i 1 j Il ——X+—0+—T as X-+ ~, Im& ~ 0;1 2 4f 2 4g

and def1ne

(21')

(22)

4,"(x, g*)
(X, K)- „(

Since 4' and 4 are linearly independent, we may write

(28)

C(X, $) =A,(g)%(X, $)+B,($)4(X, g). (24)

Again A, ($) can be analytically continued into the upper half-plane, and the zeros of A, (g) are the eigen-
values of (18) and (19) [and therefore also of (5) and (6)j. At the eigenvalues t, , j= 1, ... , N,

C(X, g,)=C„@(X,g,).

By using (20') and {21)it can readily be verified that A,{$},B,($), and C,, are independent of T. These
are known quantities and can be related to the unknown qunatities in Eq. (13) by

u, (g)=A, (g), b,(g)=B,(g), c„=c„. (26)

It should be remarked that the discrete eigenvalues must be either purely imaginary or arise as com-
plex conjugate pairs: g, —g~. Corresponding to one purely imaginary eigenvalue, /=i' is a special
traveling-wave solution of the form

u= 4» '(e"), &=(q+ I/4q)(X-X, )+(q -I/4q)T. (2't)

Simila, rly, paired complex eigenvalues correspond to soliton states which oscillate in time ("breath-
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ers"). A particular breather solution with f/* = + is given by

u = 4 tan '([(1 —e')/&u'] '"cos [e(T —T, ) ] sech [(1 —(u')'~'(X -X,) ]), (28)

Bg
, ln [det(f+AA*) ],4 Bx dx' (29)

where ~ = —2Reg. Ne note that the eigenvalues
corresponding to the modes of a given breather
in its own rest frame lie on the circle ()*= —,'.

When b($) =0 the solution is generated by the
discrete spectrum only. Following Ref. 8, the
solution can be shown to be given by

discrete spectrum outside the light cone at any
TgO.

The authors wish to thank Martin Kruskal for
many helpful discussions. Indeed, the transfor-
mation he presented" led us directly to our Eqs.
(5) and (6).

where

{c,e„*)'"™
exp[ad(g, —g *)X].

l m

(30)

The phase shifts of kink-kink (kink-antikink)
interactions have been discussed already in the
literature. ' Lamb' has recently investigated a
special class of solutions which correspond to
paired complex eigenvalue s.

A method for generating an infinite set of con-
servation laws has been given by Lamb" and ap-
plied in the context of nonlinear optics. "

In general the solution depends on both the dis-
crete and continuous spectrum [b($) WO]. The
asymptotic behavior of u in these cases can be
found by using methods similar to those used by
Ablowitz and Newell. " That part of the solution
corresponding to the continuous spectrum decays
algebraically in time. In this regard it should be
noted that, corresponding to initial conditions of
compact support, the continuous spectrum com-
pletely cancels any contribution arising from the
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We place a conservative upper limit of -4.6&&10 on the fraction of antiprotons ex-
pected in the cosmic-ray flux at the top of Earth's atmosphere due to collisions of pri-
mary cosmic rays with interstellar hydrogen. The implication of this result for experi-
ments designed to detect the existence of antimatter in the universe is discussed. We
have parametrized existing data on the P inclusive cross section from threshold to inter-
secting-storage-ring energies to obtain the result.

Recent experiments designed to look for anti-
matter in the cosmic radiation have concentrated
on antihelium ' and heavier antinuclei in order
to be able to neglect significant contamination of

the flux of antinuclei by antiprotons produced in
the collision of ordinary cosmic rays with the
interstellar gas. Previous calculations of the p
flux to be expected from this source have been
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