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ture of multiple scattering is dependent upon the
mathematical formalism used.

At 1 GeV, p= —0.2 is an average of proton-pro-
ton and neutron-proton parameters, both parame-
ters obtained from two independent nucleon-nu-
cleon determinations'" which lead to the same
results. It can thus be presumed to be fixed by
n-n data and independent of n-N experiments.
The value p= —0.3, used in Glauber-type fits to
n-N data, '4 was determined via a best fit to the
larger-angle P-'He data. It thus really repre-
sents the ratio of the real to imaginary parts of
a phenomenological potential (e.g. , see line 2,
Table I of Ref. 6) and, as such, includes nuclear
structure and recoil effects; it cannot be assumed
to be a good representation for the free, forward,
nucleon-nucleon amplitude.

The fact that the "correct" value of p, when

used in the single-scattering potential, leads to
a good representation of the small-angle P-'He
data indicates that the latter approach can be
used to determine p at other energies where the
n-n results are not conclusive. At 0.6 GeV, there
is a large discrepancy in the n-n determination
of p: Bugg et a/. ' imply a value of +0.145, where-
as the results of Dutton et al." lead to p - —0.7.
Boschitz et al. ,

"using a Glauber approach, de-
termine p = —0.43 by fitting the data for P-'He at
the diffraction minimum, but this value suffers
from the disadvantages mentioned above: It is an
n-N value, not an n-n parameter. Using p as the
only free parameter in our approach, we find an
excellent fit to the 0.6-6eV data, for P-'He cen-
ter-of-mass angles less than 16' with p= —0.14,

a value much closer to the n-n value at 1 GeV.
A direct, independent n-n determination of this
parameter at 0.6 GeV—as was done in Ref. 10 at
1 GeV—would be a useful check on the kinematic
formalism and results proposed in this paper.

We are grateful to B. C. Clark and the Instruc-
tion and Research Computer Center, The Ohio
State University, for performing the calculations
using the program of Ref. 6.
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We present experimental fusion barriers for 2S ions on Mg, Al, Ca, and Ni.
These and published data for Ar and Kr ion-induced reactions are analyzed in terms of
a simple classical formula for barrier heights. A prescription based on equivalent uni-
form charge radii from electron scattering is shown to reproduce all results to within
the experimental uncertainty.

There has been much speculation, and there
have been many calculations concerning the effec-
tive barrier for reactions between heavy ions and
target nuclei. ' ' There have been predictions of

Coulomb-induced distortion during approach of
the ions, and quantitative estimates of the Z de-
pendence of such distortion effects. An interest-
ing model prediction made more recently by Wong
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suggests that the minimum radius for interaction
decreases with increasing target or projectile
charge with respect to predictions of a classical
barrier formula with a radius parameter xo which
is mass independent. ' In this Letter we will pre-
sent new experimental fusion barrier results for
"S ion-induced reactions on "Mg, "Al, "Ca, and
"Ni targets. These will be analyzed along with
published results for Ar and Kr ion-indueed reac-
tions on targets up to "'U. An attempt will be
made to analyze these results in a fairly model-
independent manner based on radii resulting from
electron scattering and muonic -atom experiments,
and it will be shown that a simple barrier para-
metrization results for all systems to within the
+2-3% uncertainty of the experimental results.

Fusion-cross-section measurements were
made using "S beams from the Rochester MP
tande~ Van de Graaff accelerator. Gas propor-
tional ~/E solid-state counter telescopes were
used for direct measurement of fusion product
angular distributions, The angular distributions
were measured in 1'-2 steps (laboratory sys-
tem) at angles between 3' and 20; these results
were then integrated over angle to give total fu-
sion product cross sections. Results, as shown
in Fig. 1, are thought to be accurate to +10%.
These results were then plotted against the recip-
rocal of the center-of-mass energy to determine
the fusion barriers V. This analysis is based on
the classical formula

o = mA'(1 —V/~).

The linearly extrapolated zero-cross-section in-
tercepts gave the barriers V with an estimated
uncertainty of +2% (slightly higher for "S+"Ni).
The distance of the onset of fusion at ~= V is
Af„„and ean be evaluated to +0.2 fm from the
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slope of the v-v ers us-1 /e line. Results for A„,
and t/' from these data are given in Table I along
with experimental barrier heights which have
been published for Ar- and Kr-induced reac-
tions. ' '

The interaction potential between two ions may
be represented as the sum of repulsive Coulomb
and attractive nuclear potentials,

V(A) = V c,„i(A) + V „„,i(A)

and the fusion barrier V is defined to be the value
of V(A) at which dV(A')/dA=O. The fusion radius,
Af„, of Eq. (1), is the value of A where the deriv-
ative is zero. Values of fusion barriers as de-
fined by Eq. (2) and as deduced from experimen-
tal results have often been analyzed by a para-
metrization based only on the Coulomb interac-
tion term, '"

V = Z,Z,e'/A, gg= Z,Z,e'/(A„i + A r+ d),
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FIG. 1. Experimental fusion cross section as a func-
tion of incident S ion energy (Mev) . Target nuclides
are indicated on the figure.

TABLE I. Experimental fusion barrier heights and radii for fusion reactions.

Projectile Target (MeV)
jeff
(fm)

&eq. uniform
(fm) (fm) Source

32S

Ar

Mg
Al

40Ca

'8Ni
169D

238U

"Ge
'I16cd

Th
238U

28.3
29.7
43 .5
59.5

135
171
145
204
332
333

8.7+ 0.2
8.5 + 0.2
9.2 + 0.2
8.5+ 0.25

9.8
10.1
10.6
10.85
12.8
13~ 9
11.4
12.3
14.1
14.3

8.0
8.1
8.7
9.1

11.2
11.9
10.2
11.1
12.5
12.5

1.8
2.0
1.9
1.8
1.6
2.0
1.2
1.2
1.6
1.8

This work
This work
This work
This work

Ref. 5
Ref. 6
Ref. 7
Ref. 7
Ref. 8

Ref. 8
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g=1.120'~~~+ 2 00'-»~ 1 513~-~ fm (4)

The results of the analyses of this work would
therefore suggest that reaction barriers for
quite heavy ions might be estimated to 2-3/0 us-
ing Eqs. (3) and (4) with d —= 1.7 fm.

We conclude that to within uncertainties of +2-
3%, the data analyzed herein present no experi-

where 8» and A~ are heavy-ion and target radii,
and d is an additional distance parameter which
allows for effects such as finite range of nuclear
forces, differences between proton and neutron
distributions, diffuseness, and possible distor-
tion effects. In particular it should be noted that
the distance R,«extracted from Eq. (3) upon sub-
stitution of experimental fusion barriers V, must
be larger than the values of Rf„, of Eq. (l). This
follows from the fact that V„„„(R)has been ne-
glected in assuming V(R) = Vc,„,(R) in the para-
metrization of Eq. (3). An analysis of the type
implied by Eq. (3), in which experimental results
are compared with calculated values of A»+R~,
and d values are extracted, has been reported by
I efort et al.' A constant radius parameter was
used in calculating A» and R~ in Ref. 9. We have
analyzed the data summarized in Table I using
values of 8» and R~ from equivalent uniform
charge radii which were experimentally deter-
mined in electron scattering and mesonic-atom
experiments"'"; in this respect the analysis dif-
fers from several other treatments of the prob-
lem in which a mass-independent radius parame-
ter was chosen." For nuclei not listed in the
tabulations of Ref. 11 or by Uberall, "equivalent
uniform charge radii based on radius parameters
extracted for the nearest listed nuclei were used.
This may give the largest uncertainty for reac-
tions on the deformed Th and U targets, for
which a radius parameter based on the spherical
nuclei ' 'Pb and "'Bi was used.

The values extracted for d are summarized in
Table I, and in Fig. 2. Within the experimental
uncertainties of +0.2 —0.3 fm, all resuIts are
consistent with an interaction radius of 8»+ R ~
+ 1.7 fm. Trends toward lower radii for higher
target or projectile charge (lower d values for
higher Z) are not supported by the present data
when the radii are evaluated from experimental
results. This point is emphasized in the upper
portion of Fig. 2 where the d values are shown
as ordinate with Z»Z~ as abscissa.

The equivalent uniform charge electron scatter-
ing radii are reproduced to within 0.1 fm by the
analytical result due to Elton, "
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FIG. 2. Distance parameters extracted from the bar-
rier-height formula. Upper part, d as a function of the
product of target and projectile charge; lower part, d
as a function of target mass. A solid curve has been
drawn at d =1.7 fm, and dotted curves at 1.7~0.2 fm to
illustrate that d may be considered a constant to within
those limits. The projectiles as identified in the upper
curve correspond to points in both curves.
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mental evidence for deformation or charge effects
on fusion barrier heights when the data are ana-
lyzed by the method presented in this work. Our
interpretation of the conclusions of Refs. 1-3 is
that no effects outside this range are predicted.
More extensive data will be needed to answer the
question as to whether or not such effects are
present and of quantitative importance with re-
spect to limitations of experimental determina-
tion and significance, or whether they would be
present if a radius based on the mass rather than
the charge distribution were used. In the interim,
the prescription for calculating reaction barriers
given by Eqs. (3) and (4) may be useful.

1261



VOLUME $0, NUMBER 25 PHYSICAL RKVIK%" LKTTKRS 18 JUNj 1975

(1972).
M. Lefort, C. Ngo, J. Peter, and B. Talnain, Nucl.

Phys. A197, 485 (1972).
S. Cohen, F. Plasil, and W. J. Swiatecki, Lawrence

Berkeley Laboratory Beport No. LBL 1502, 1972 (un-

published); W. D. Myers, private communication.
l B. Hofstadter, Annu. Bev. Nucl. Sci. 7, 295 (1957).
2H. Uberall, Electron Scattering from Complex Nu-

clei (Academic, New York, 1971), Sect. 3, formula (3-
4li) p. 213.

Method for Solving the Sine-Gordon Equation*

M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur
Claxkson College of Technology, I'otsdam, ¹w&o&& &36&6

(Received 7 March 1973)

The initial value problem for the sine-Gordon equation is solved by the inverse-scat-
tering method.

&v, /at = (i/4&)(v, cosu+ v, sinu),

&v, /&t = (i/4&)(v, sinu —v, cosu),

(7}

(6)

ensures that the eigenvalue f is independent of t,
provided u(x, t) evolves according to (3). The
scattering data (eigenvalues, reflection coeffi-
cients, etc.) can be found and the potential q(x, t)
can then be determined for all time by the in-
verse -scattering method.

The sine-Gordon equation,

8'u/8T' —&'u/BX'+ sin(u) = 0,

arises in many branches of mathematical phys-
ics.' ' Special solutions known as kinks,

u(X, T) =4tan '(exp[(X —UT)/(1 —U'}'"]), (2)

have been known for some time and "multikink"
solutions have also been found. ' '

Equation (1) can be solved by the inverse-scat-
tering method. It is convenient to write the sine-
Gordon equation (1) as

&'u/Bx St = sin(u),

by use of the transformation

x = a(X+ T}, t = ,'(X - T)-
Consider the following linear eigenvalue prob-
lem'

sv~/ax+ 'lt v~ = cj(x, t)v2,

ev, /Bx —igv, = —q(x, t)v„

where t is the eigenvalue q(x, t) = .—2»(x, t}/ox,
and u(x, t) -0 (or a multiple of 2m) as x- +~ and
is sufficiently well behaved. By cross differentia-
tion, a particular choice for the t dependence of
v, (x, t) and v, (x, t),

The results of Zakharov and Shabat' directly
apply and allow us to reconstruct q(x, t)!

Following Ref. 8, we define the functions y and
as solutions of Eqs. (5) and (6) with the asymp-

totic form

e '~" as g- —~ ImP~0
0

In addition, we note that if

is a solution of (5) and (6}, then a linearly inde-
pendent solution i.s given by

(10)

The pair of solutions ( and 17forms a complete
system of solutions, and therefore we can write

y(x, g, ) = cP(x, tq) (12}

The t dependence of a(t'), b($), and c,. is found
from (7) and (8) to be

a(g) = a,(&), b($) = b, ($) exp(- it/2$),

c,(t,) = c,, exp( —it/2g, .).
The solution of. the inverse problem' is given

a($) can be analytically continued to the upper
half-plane Im(gg) &0 and, in particular, the zeros
t', (j= 1, ... , Ã) of a(g) in the upper half-plane are
the discrete eigenvalues of (5) and (6). At these
values we have


