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from the higher of the two pulses are shown in
Fig. 2. In Fig. 2(b) the diode voltage has been
corrected for induced voltage. " The peak volt-
age was 0.69 MV, which coincided with the peak
indicated Faraday-cup current. The diode space
was shorted by debris or plasma at t = to+ 30 nsec.

Figure 2(c) shows an overlay of the diode and
Faraday-cup currents. The Faraday-cup trace
indicates that only a very small fraction of the
diode current entered the aperture before t = tp

+ 7 nsec, when the beam focused sharply and more
than 90% of the entire beam passed through the
aperture. At t=t, +14 nsec the Faraday-cup sur-
face apparently became conductive and probably
was reading a current less than the total incident
beam current. " The peak current positively di-
agnosed was 2.71 MA/cm', and the peak power
flux was 1.87 TW/cm'. The rate of rise of power
on the target was 9&&10"W/cm' sec. Figure
3 shows the aperture after the shot and indicates
that the area where the tantalum was vaporized
away had a radius of approximately 1 mm. The
tantalum was lightly damaged to a radius of
3.5 mm. This probably occurred in the first 7
nsec of the beam pulse, before the beam self-
pinched into the aperture. The current after 7

nsec was always considerably in excess of the
minimum current" for a diode self™pinch, and

one would not expect subsequent defocusing.

~Work was performed under the auspices of the U. S.
Atomic Energy Commission.
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The implications of magnetic symmetry on the-spin-wave spectrum of ferromagnets are
examined. Contrary to the usual result, the spin-wave dispersion relation is found to
contain a term linear in the wave vector for a definite set of magnetic symmetries. This
linear dispersion is shown to be a consequence of antisymmetric exchange.

One of the most widely accepted results of spin-
wave theory in ferromagnets' ' is the quadratic
dispersion law

u =a+@02.

Here, ~ is the angu1ar frequency of a spin wave
and k is its wave number. Although the constants
a and c depend upon the exact form of the magnet-
ic anisotropy, the exchange energy, external
magnetic fields, sample shape, and the direction
of propagation of the spin wave, the quadratic
dependence on k remains unaltered. The purpose
of this paper is to show that the above quadratic

dispersion law is a consequence of assumptions
regarding the magnetic symmetry of the medium
and/or the symmetry of the exchange coupling.
The apparent generality of Eq. (1) can lead to the
incorrect conclusion that this quadratic disper-
sion law is fundamental to the nature of magnetic
excitations in ferromagnetic media. The approach
used here is largely phenomenological and is
based upon the classical continum model of a
ferromagnet as discussed in Ref. 3. However,
a microscopic example of a relevant system is
a1so discussed.

The energy density of a ferromagnet can be
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written in the following form:
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tallographic symmetries for which optical acti-
vity is allowed. Combining the geometric oper-
ations of these eighteen crystallographic groups
with that of time reversal leads to nineteen mag-
netic point groups which are consistent with a net
ferromagnetic moment and with a nonzero anti-
symmetric exchange tensor A. ;,, = -A, ,,

The remainder of this paper is confined to a
discussion of uniaxial ferromagnetic materials
for which antisymmetric exchange can affect the
propagation of spin waves along the unique axis.
This restriction further limits the discussion to
materials with one of the following six magnetic
symmetry groups:

~= Z(M, , sM, /sx, .)

+(8w) '(H'+ E.D) -H' M. (2}

(7)3, 32, 4, 422, 6, 622.

The most general stored energy density (to sec-
ond order in the direction cosines n; and their
gradients) for this special case is given by

Z = —,
'

k, &
o.;o., +&,,„o,, &o.„/&x,

Here, Z is the stored or potential energy density
which in the long-wavelength limit is taken to be
a function of the components of the magnetic mo-
ment per unit volume M, and their first spatial
derivatives 8M~/&x, . The Maxwellian magnetic
field, electric field, and electric displacement
are denoted respectively by H, E, and 0 and the
external field is denoted by H'. The total energy
W is just the volume integral f„md'r.

The stored energy density Z is generally as-
sumed to be expressible as a polynomial in M;
and &M,/ax, with the constraint that M;M, =MD~

is a constant of the motion. (Summation over
repeated indices is assumed throughout this pa-
per. ) Defining u; =-M;/M, we have to second order
in n; and &o.;/&x, the following expression for Z:

+-,' Z „,(s~,/sx, )(en„/sx, ). j g g 1g tXjg Qy
(8)

BM/ef = y(M x H' ) (4)

K„ is the second-order magnetic anisotropy ten-
sor, 4,',» is the usual symmetrical exchange-
constant tensor, ' and &;,„(as is shown later) is
the antisymmetrical exchange tensor. The three
material tensors appearing on the right-hand
side of Eq. (3) must be invariant to the symmetry
operations of the material. The torque equation

The frequency- and wave-vector-dependent
susceptibility' y, &(e, 4) is defined via

m,. ((u, 0) = y, , ((u, k)h, ((u, k),

where m(&u, k) and h(a, k) are the space-time
Fourier transforms of the deviations of M and H
from their equilibrium values Mp and Hp From
Eqs. (4), (5), and (9), one finds all y, , = 0 except

describes the time variation of the magnetization,
The effective field is'

4U

[(u —(2y/~)A„, a]' —~ ' ' (10a)

H' =——5W/5M = —(1/M ) 5W/5Z,

where 5/5M denotes the functional derivative with
respect to M. It is easily shown that as a con-
sequence of Eqs. (4) and (5), one can, without
loss of generality, restrict the tensor A, ,„ to be
antisymmetric in the first two indices:

A, ,~
——A. ,;~.

Since the existence of linear spatial dispersion
in the spin-wave spectrum is shown below to be
a consequence of antisymmetric exchange, it is
useful to examine the restrictions imposed by
material symmetry on the existence of polar ten-
sors of the form A;,~

= —A, ;~. Eighteen of the 21
noncentrosymmetric cyrstallographic point groups
(excluding 8, 6m2, and 43m for which A;,, =A, ,, )
allow the existence of nonzero components of
A, ,~= -A, ,~. These eighteen are just those crys-

where

+ i y~[~ —(2y/~)W„, a]
[(u —(2y/A@A„, k] ' —(u,

' ' (10b)

y;, ((u, k, H') = y, , ((u, -k, -ll'). (12)

The susceptibility calculated in Eqs. (10) can
readily be shown to have this property. Note
that assumption of a stable equilibrium state of
the material assures that Q- —Q when O'- —H'.

In the magnetostatic limit (V xh = 0), h„= h., = 0,

(u, = y[Ho + H'+ K/Q +J~~k'/Q].

We have assumed the external field H' to be ap-
plied along the z axis and that the sample is uni-
formly magnetized in that direction. The gen-
eralized principle of symmetry of the kinetic co-
efficients for gyrotropic media' places the follow-
ing general condition on the susceptibility:
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and solutions to Eq. (7) are possible only for the
poles of y„, . The following dispersion law for
ferromagnets is thereby obtained:

Ans= 2y

This has the general form:

v, = +a+ bk+ck'. (14)

The eigenvectors associated with ~, are m, = m„
+ im„, respectively. These correspond to right-
and left-handed precession of the magnetization
about the direction of the external magnetic field
(i.e. , the equilibrium direction of the magnetiza-
tion). Note that this does not necessarily cor-
respond to right- or left-handed precession about
the propagation direction. In Fig. 1, ~+ and ~
are plotted versus 0 for a given set of values for
a, b, and c (assuming all three are positive). On-

ly positive frequencies are physically meaningful.

By suitably choosing the values of a, b, and c,
the dispersion curve (Fig. 1) can be made to in-
tersect the abscissa (&u =0). The ground state is
then no longer the assumed simple ferromagnetic
order but has a helical spin arrangement. The
present analysis is not adequate to describe the
excitations in the helical state. Since the param-
eter a is dependent upon the external field [Eq.
(13)], phase transitions between these two types
of magnetic order can be induced by changing the
magnitude of O'. The soft mode for the transi-
tion from the ferromagnetic to the helical con-
figuration is u, (k =a b/2c).

As pointed out originally by Stevens, ' the origin
of antisymmetric exchange lies in the spin-orbit
coupling. %'hen the orbital and spin degrees of
freedom are coupled, the ground state is not
rigorously a product of spin and orbital states
but rather a mixed state, Taking this properly
into account' leads, in addition to the usual sym-
metric exchange interaction

—g Z(f~,.)S(l ).S(m),
5 &in

b 0
2C

b+-
2C

-a.&

/
/

FIG. &. The dispersion relation ~=+a+bA' +ck is
plotted for positive a, b, and c. Positive frequencies
are plotted as a solid curve and negative frequencies as
a dashed curve. The assumption is made that a+c42
&-bk for all 4.

to an antisymmetric contribution of the form

X,=g A(fl, „) S(l) XS(m).

A(R, ) is the antisymmetric exchange constant and
is dependent only upon the distance g between
the spins S(l) and S(m) on the lth and mth sites,
respectively. In order of magnitude IA( and the
symmetric exchange constant J are related by

(i6)

Here A, is the spin-orbit coupling constant and 6
is the appropriate crystal-field splitting parame-
ter. The third-rank antisymmetric tensor, A, ,~,
is just an integral measure of the axial vector
A(fl, ).

The microscopic origin of linear dispersion in
the antisymmetric exchange coupling and the as-
sociated symmetry requirements is readily seen
in the following example. By analogy to Eq. (8)
the microscopic Hamiltonian of a linear chain of
magnetic ions whose site symmetry is included
in Eq. (7) can be written

K = ——,'DQ, S,'(l) +&,Q, [S„(l)S,(l + 1) —S„(l)S„(l+1)]+8,Qg[S„(l)S„(l+ 1)+ S,(l)S,(l+ 1)]

+ J Q, S,(l)S,(l+1) —gPH'Q, S,(l). (17)

Examples of such a system include materials with one magnetic ion per unit cell with nonmagnetic ions
determining the site symmetry and systems for which each unit cell contains n magnetic ions which
are equivalent under an n-fold screw (n = 3, 4, 6) along the z axis. The dispersion relation is readily
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found to be

&o = 2A, (S,) sinkc a [MPH'+ (D —2J, + 2J, coskc)(S,)], (18)

where c is the lattice constant. For kg «1 this
result is equivalent to Eq. (13). The absence of
constant terms in the equations of motion deter-
mined from Eq. (17) and the commutation of

Q, S,(l) with K shows that for w &0 (all k) the
ground state consists of all spins aligned ferro-
magnetically along the z axis.

Antisymmetric interactions between spins along
the chain (s axis) do not a,ffect the ferromagnetic
ground state (except as noted above). However,
antisymmetric interactions between ions in the
xy plane can cause the ground state to have a
more complicated sublattice structure with a net
z component of magnetization per unit cell. The
excitations of such systems must be described
in terms of a multisublattice model and have not
been treated here.

Antisymmetric exchange has been shown by
Dzialoshinski' to explain the appearance of weak
ferromagnetism in otherwise compensated anti-
ferromagnets (see also Ref. 7). The intersublat-
tice antisymmetric exchange in such systems
does not in general lead to linear dispersion. '
The effect of antisymmetric exchange on the spin-
wave spectrum of simple ferromagnets has ap-
parently not been previously discussed. The lin-
ear dispersion often derived for spin waves in
antiferromagnets is a consequence of the assump-
tion of magnetic isotropy' and is in no way relat-
ed to the linear dispersion discussed in this pa-
per. This holds also for the so-called "nonacti-
vated spin-flop mode" as has been discussed pre-
viously. '~ It is no coincidence that the material

symmetry requirements for the existence of op-
tical"' "and acoustical" activity are closely re-
lated to those for the effects discussed in this
paper.

The author wishes to acknowledge discussions
of various aspects of this paper with G. Burns,
E. Burstein, and N. S. Shiren.
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