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Effect of Nuclear Motion on the Energy Eigenvalues in Muonic Atoms*
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I have investigated the effect of the nuclear motion on the energy eigenvalues in muonic
atoms. In addition to the usually used reduced-mass correction, I have calculated the rel-
ativistic influences including the magnetic and retardation interaction between the nucle-
us and the muon for the inner orbitals of muonic atoms.

A muonic atom, like the hydrogen atom, is in
principle the simplest of all possible atoms. It
is necessary, however, to add a number of cor-
rections to the hydrogenic values to get accurate
theoretical values to compare with the observed
x-ray energies. The largest of all corrections
for inner orbitals comes from the influence of
the extended nucleus in heavy muonic atoms. It
reduces the ls binding energies by more than
50'%%u~ from the value for a point nucleus. This pro-
vides an excellent possibility to determine the
nuclear charge distribution. Many papers have
dealt with this subject, ' and a great amount of
information on the nuclear radii, etc. has been
gathered. The other corrections which have been
discussed in some detail are the vacuum polari-
zation, ' ' the Lamb shift, ' the nuclear polariza-
tion, ' and the electron shielding. '

In the nonrelativistic theory, the effect of the
nuclear motion is fully taken into account by
using the reduced mass p = mM/(m+ M) of the
system instead of the rest mass m of the muon,
where M is the nuclear mass. In its simplest
form, this correction is given by the energy
eigenvalue multiplied by m/M. But even in the
nonrelativistic theory this is only valid as long
as the nucleus is a point charge, because the
virial theorem does not hold true in the region
inside the nucleus. In addition to that, the re-
duced-mass effect is not fully taken into account

in the relativistic theory when the reduced mass
is used instead of the rest mass. This so-called
relativistic reduced-mass correction was first
calculated by Bechert and Meixner' and later by
Breit and Brown' mainly to show that this effect
is not significant for the fine structure or the
Lamb shift of electronic levels in hydrogen. In
view of the high accuracy of recent measure-
ments of the transition energies in the muonic
atoms this statement is no longer true. There-
fore some authors" have used a correction form-
ula for the relativistic reduced-mass correction,

—(Z a/2n) (m/M)! W -m c'!',

where 8' is the total energy of the bound muon.
But this formula is only applicable to states
where the relativistic effects as well as the in-
fluence of the extended nucleus are very small.
Breit and Brown examined the whole question
from a general point of view using a Hamiltonian
applicable to two charged particles and account-
ing for effects of the order of v'/c', where v is
the velocity of the bound particle. The solution
is carried out in terms of an eight-component
approximation of the sixteen-component wave
function. They show that the only important con-
tributions for the effect of the nuclear motion,
and this is also true for all levels of all possible
muonic atoms, can be expressed in terms of the
sum of the expectation values of the quantities

p'
+

~e' p n + ct p+(p r)(n r) +(a r)(r p)
2M 4M' (2)

where tp I is the momentum of the nucleus and the muon, n the 4&4-component Dirac matrices, and r
the distance between the nucleus and the bound particle. The first part of Eq. (2) is the expectation
value of the kinetic energy of the nuclear motion and the second term, which we will call (E'), is the
magnetic and retardation interaction between the muon and the nucleus. All parts which are dependent
upon the nuclear spin have been removed because the spin-spin interaction will be very small even in
muonic atoms. This procedure is, of course, completely safe for all nuclei with spin 0. Equation (2)
can be expressed in terms of the total energy of the bound muon, the nuclear potential, and the large
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and small components (g and f, respectively) of the wave function of the bound muon:

(p'/2M) = (2Mc') 'f (c'po' —n'c )(f'+g')r'dr,
with cpa= W+Ze'/r and f (f'+g')r'dr =1, and

(Y') = —(Ze'/Mc')( f [(cp, +mc')f'+(cp, -mc')g']rdr —Secf fgdr)
0

with the radial quantum number g =j+—,'.
The sum of both terms can be expressed by

Going to the limit of small Z and the case of a pure Coulomb potential, the sum reduces to the expres-
sion

E, = —(W' —m'c')/2l4"c'.

This expression can be written for small binding energies as

I 2 Vl, ZO| 2Z, =-—(W-mc ) —— iW-mc i.I M 2n

(4)

(5)

The first part in this equation is the reduced-mass correction in its simplest version, and the second
part is identical with Eq. (1). Of course, this procedure is correct only in the case where the mean
radius of the muonic wave function is large in comparison to the nuclear dimensions and where the
mass of the nucleus is large in comparison to the mass of the muon. Thus, for low-Z muonic atoms
at least, Eq. (4) has to be used instead of Eq. (5).

To assess how reliable the various approximations are for the inner orbitals of a heavy muonic atom
like lead we list the various approximations and calculations for comparison in Table I. Column I
gives the reduced-mass correction in its simplest version by multiplying the energy eigenvalue by
m/M. Columns 2 and 3 give the results according to Eqs. (5) and (4), respectively. To give an even
better approximation for the effect of the extended nucleus on the inner orbitals in high-Z muonic
atoms we did not only use the relativistic wave functions calculated in the potential of the extended

TABLE I. Effect of the nuclear motion on various inner orbitals in muonic lead using the different approximations
described in the text. Energies are in eV.
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nucleus, but have also introduced, instead of the interaction parameter Ze', the nuclear potential it-
self, rV(r). So Eq. (3) can be written as

+72 2 2

8, = f—V(r)(g' f-')r'dh — 2f V(r)'(f +g')x'dr+, f V(r) fgrdx+

In column 4 of Table I we list the results calculated with this equation. In this row we also list sepa-
rately the expectation values (p'/2M), the reduced-mass correction part, and (y), the effect of the
magnetic and retardation interaction between the muon and the nucleus. The magnetic interaction in-
creases the binding energy, whereas the retardation effect decreases the binding of the muon.

This value in column 4 has to be compared with the calculation usually used where the reduced-mass
correction is directly taken into account in the numerical integration of the Dirac equation. The dif-
ference between such a calculation using the reduced mass and the rest mass of the muon is given in
column 5. In such a calculation, all influences due to the extended nucleus are already taken care of in
an accurate way so that the difference between columns 4 and 5, which we present in column 6, gives
the additional relativistic reduced-mass correction which we were looking for. A comparison of 2 and
4 also shows that the calculation of the relativistic reduced-mass correction which was used so far is
correct for a transition like 5g-4 f, but is not adequate for inner transitions.

The results in column 6 can be checked independently for high levels in the following way. Within
the Pauli approximation, the Breit Hamiltonian for a nucleus with spin 0 and a bound fermion can be
written as the sum of (a) the nonrelativistic Hamiltonian for both particles, (b) the mass velocity, the
spin-orbit, and the Darwin terms for both particles, and (c) the magnetic and retardation correction.
When the reduced mass of the system is introduced instead of m and M, the Hamiltonian" reads (for a
point nucleus), within the zeroth and first power of m/M, as

II =H, +H~, H, = V(r)+ — 2+—— —— (rxp) z- 2p ~ grad-,p 1 &eh iZe% 1
2p, 8 e2 pc 2~ '

y
'

1 3 4 Ze' 1, 2 iZe'5Hb=, ,p' — —(p'+p„')+ p ~ grad —,
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FIG. 1. Relativistic reduced-mass correction (in eV) for the inner orbitals of muonic atoms as functions of the
atomic number.
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with P „'= (1/r')r ~ (r j)p.
The first part, H, , is the Pauli approximation

to the Dirac Hamiltonian with the reduced mass.
This is usually solved exactly by numerical in-
tegration of the Dirac equation itself. The expec-
tation value of the second part, H» leads to the
additional relativistic reduced-mass correction.
Because this Hamiltonian is an approximation
within nonrelativistic basis functions, the expec-
tation value of H, can be calculated for s,p, d, ...
states only. These values, including the effect of
the extended nucleus, are given in column 7 of
Table I, and they show indeed a very good agree-
ment for the high levels.

This result is very important because of the fol-
lowing two consequences. First, it shows that
the theoretical calculations for the muonic transi-
tions between states with large n and l values,
which are used in the experiment to investigate
the vacuum polarization in higher orders as well
as shielding effects, ""are not affected by this
contribution.

Secondly, the additional corrections for the in-
nermost shells in heavy muonic atoms are as
high as I keV and the sum of all additional effects
as high as 0.5 keV. In view of the high-accuracy
measurements of the transitions in muonic atoms,
the exact knowledge of these corrections becomes
most important. Recent experimental determina-
tions of the nuclear polarization~~ lie systemati-
cally above the theoretical values of Chen and
Skarohamar. ' Although these corrections are
too small to explain these differences, they go in
the right direction. In Fig. 1 we give the correc-
tions of the relativistic reduced-mass effect for
the inner levels as functions of Z.
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