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case the continuity equation (3) and the superfluid-ac-
celeration equation (4) provide a complete description
and in fact, are isomorphic to the classical Euler hy-
drodynamics at 0°K. Thus a small disturbance travels

1/2 which is the velocity of ordinary

at velocity (pdu/dp)
sound.
3. R. Schrieffer, Theory of Superconductivity (Ben-

jamin, New York, 1964),
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1t is shown that the anomalous zero-sound attenuation at the transition “A” observed re-
cently in liquid *He at about 2.7 mK can be understood by postulating pairing in a state of
odd relative angular momentum, The attenuation is found to depend strongly on the angu-
lar variation and orientation of the gap parameter, providing information on the precise
nature of the pairing. It is concluded that (1) Balian-Werthamer p-wave pairing can be
ruled out, and (2) Anderson-Morel p-wave pairing is possible,

We have calculated a contribution to the zero-
sound attenuation in a postulated superfluid state
of ®He, which is caused by direct absorption of
phonons by the Cooper pairs, with a view to ex-
plaining the recently found anomalies in the zero-
sound attenuation of 3He below the transition “A.”!
Although both absolute value and temperature de~
pendence of the calculated attenuation are of the
correct order of magnitude, it seems that none
of the equilibrium states discussed below leads
to satisfactory agreement with experiment. The
reason for this preliminary report is that our re-
sults suggest zero-sound—attenuation measure-
ments as a tool for investigating the angle de-
pendence of the gap parameter. On the basis of
the existing data some general conclusions can
be drawn, which aid further theoretical searches
for the nature of the equilibrium state of super-
fluid 3He.

It is known from the theory of normal Fermi
liquids? that zero sound can be damped in two
ways. The usual mechanism, which accounts for
the attenuation in normal 3He, is collision damp-
ing. In the superfluid state, close to the phase
transition, the corrections to the normal-state
results are small, of order {|A|?/(#T), where
{|lA?) is an appropriate angular average of the
gap parameter at temperature T. Furthermore,
since the expression for the (collision-induced)
zero~-sound attenuation involves multiple integra-
tions it can be expected to vary smoothly with
temperature on a scale given by T',, whereas the
observed anomalous attenuation is confined to a
small region within some 10°2T, of the transition

temperature. It therefore seems reasonable to
identify the experimentally observed background
attenuation with collision damping. Another mech-
anism for zero-sound attenuation is “Landau
damping”: the direct absorption of phonons by
pairs of single-particle excitations. There is no
Landau damping in the normal state for reasons
of energy and momentum conservation, because
the zero-sound velocity in He is much greater
than the Fermi velocity. In the superfluid state,
the absorption of a phonon by a Cooper pair,
which subsequently breaks up into two quasipar-
ticles of nearly opposite momenta, takes place
whenever the energy conservation requirement

w=2E, 1)

is met (w is the phonon frequency, E, the BCS
single-particle energy; Z=4k; =1). We have ne-
glected the phonon momentum ¢ in Eq. (1), which
would lead to small corrections. For sound fre-
quencies such that w < T, (in Ref. 1, w=27x10"
sec™'=0.48 mK and T,=2.7 mK), Eq. (1) can be
satisfied only very close to T, .

At present there exists no complete equilibrium
theory for the newly discovered phases of 3He.
There is accumulating evidence®™ that liquid 3He
undergoes a phase transition into a BCS-type
state, where the pairing occurs in a state of odd
relative angular momentum L (spin triplet). Up
to now the more detailed discussions of spin-trip-
let pairing have been concentrated on the p-wave
case. Balian and Werthamer® (BW) have shown
that for spin-independent p -wave interaction the
isotropic solution of the gap equation belongs to
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the lowest free energy. The single-particle ener-
gy is E,2=¢€,2+A%(T), with A(T)~ 3.06T,t*/2 for
t<«<1 [t is the reduced temperature (T,~T)/T,;
€,=k2/2m* —€; m* is the effective mass]. Am-
begaokar and Mermin® extended this analysis to
include the effects of a static magnetic field H.
They found that the transition “A” is split.

Anderson and Brinkman'® have shown how the
inclusion of spin fluctuation effects may cause
the effective pairing interaction to become spin
dependent in such a way as to suppress pairing
with magnetic spin quantum number S, =0.*

They found that the gap matrix has again the
same angular dependence as the BW state, but
Ayw(T)=0 and A, (T)=3.42T t'2, The single-
particle energy is E, 2 =€,,% +A 4 2(T) sin®6. All
of these gap solutions are degenerate with re-
spect to rotations in momentum space and/or
spin space.

From Eq. (1) it follows immediately that ab-
sorption can only take place for temperatures
such that « >2 min[A(k; T)]. Consequently, in
the isotropic Balian-Werthamer state the anoma-
lous absorption is confined to the temperature
range ¢ < (w/6.12T,?~ 8 x10"* (for the experimen-
tal parameters of Ref. 1), which is much smaller
than experimentally observed (cf. Fig. 1). On the
other hand there obviously exists no such rigor-
ous bound for the Anderson-Morel state, in
which absorption is possible at any temperature
below T'., if only for a small fraction of states
ink space in the direction of the nodes of the gap.
We can therefore, in the latter case, expect a
peak in the absorption somewhere near 7', and a
relatively long tail for lower T'. This is borne
out by the detailed calculation of the absorption
described below (cf. Fig. 1). We can also see
that the attenuation peak will be split in a suffi-
ciently strong magnetic field, the first peak cor-
responding to w= 2|A |, Quite generally, we can
infer from the experimentally observed long tail
in the attenuation that the gap parameter has to
be very anisotropic. In concluding this qualita-
tive discussion we remark that according to the

wbng = oniey,’ - €g."0ng +np "0ey — bepny,’,
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FIG. 1. Anomalous zero-sound attenuation Aa, and
change of sound velocity Ac, in the Anderson-Morel
state below the transition “A” in ’He versus reduced
temperature T/7T, (T, =2.7 mK), for 5-, 10-, and 15~
MHz sound. The curve marked (Aao) represents an
angular average over all orientations of the gap axis;
all other curves are for parallel orientation of the gap
axis with respect to the direction of sound propagation
q. The data points are from Ref. 1 (background sub-

tracted),

above considerations there should be no peak in
the anomalous attenuation at the transition “A,”
and at the transition “B,” if “B” is only a read-
justment of the superfluid state.

In the following we briefly describe the analyti-
cal results. One way to calculate sound attenua-
tion is to derive the dispersion relation. This
is done by writing down and solving the Landau
transport equation appropriate for the superfluid
state. A convenient way of writing this is'?

@)

where Ei =k+ 4/2 and the underlined quantities are 4x4 matrices in Nambu and spin space. The quasi-
particle distribution function and energy matrices are defined as

b fr (Q, ) ogw (@, w)
Gﬁﬁ= )
ogp* (=4, —w) =0fi7 (G w)

dey =
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with
6 fras(@ @)= fdte " olag o Waws (N, oggas@ w)=fdte” *olag_olag,s (1),
0@ @)= 2 fie,Bardfi,a8@ ), 0E0s(E w)=Trgva,06087,08(@ ©)-
Here fiyy, ws is the usual Fermi-liquid interaction® and g, s is the pairing interaction. The quantity

dey also contains the direct energy gain in an external field. € #° is the equilibrium quasiparticle ener-
gy matrix

0u,8€ra  ARas

— A gap* 0q,8€ra

and the equilibrium distribution function #,° for states with diagonal A ;3 and for BW-type states with-
out magnetic field is given by #,°=3 — ¢,%,, where 6,=tanh(E,/2T)/2E, and E,2=¢2 +ApApT.

In order to solve Eq. (2) we assume as usual that the energy dependence of the interaction param-
eters f,,, and g,,, is negligible near the Fermi surface, We solve for 6f and 8g in terms of de and

6A and operate with } w50 o s and Zpgk—’a,m, respectively, on these. The result, after expanding
for ¢ <kp and w < €5,% is

degy = %EB(4H)-1fdQI?FE’a,WB

x{[n/(w =n)](1 = 2Aip)0e 7 — A (O€ g+ 0€ iop) = 5 (w + M)A g (BAA* = ABA*) g}, (32)
0Agap + (47)7 [dQg Gra, s )., e dei0ATap = (47)! [ dp G, WA

X {—%Ak—zaﬁ[(u} +m)0epp+ (W =Mvepp] = 3(w? =7 = 2|Ap]2)0Ap 45 + (AdAa*A)g,5b, (3D)

where [k|=[K'|=kp, =%, 3 &, is the quasiparticle velocity on the Fermi surface), Fzy wp=v(0)
X fea.w8r Gro, s =3 U0)gry, s [v(0) is the density of states of both spins], w, is the cutoff parameter
appearing in the gap equation. We have assumed 6¢,5 as well as (6AA*),; to be diagonal. Ay, is given
by

Ago=—2 N !az J_: deg [wzeT&x +772€1”<’ defa/dE?]Dl_?a-l

with

’

Dy, =w?(w? —4E¢2) - n?(w? = 4ep,2), X=)/|A2.

For A =0 the equation for 6¢ reduces to the correct result for a normal Fermi liquid. We now ex-
pand Egs. (3) in spherical harmonics and adopt the usual approximation? of setting the Fermi-liquid
parameters F; equal to zero for /> 2. In the case of p-wave pairing, we can also set G,=0 for /> 2
[for odd L pairing, by inspection of Eq. (3b), even ! components of 6A do not couple to 6e and we can
set G;=0 for even I ]. By virtue of the gap equation

INTTE f_‘:’u(; de-p(‘hr)"fdﬂ;,G;a_psepBA—g,ae,
the dependence on G drops out of Eq. (3b). For any particular choice of A we can now solve Egs. (3).
The resulting dispersion relation is (s =w/vq)

s?=sZ2[1+£(1+3F,],

with s~ 3F,+2)(EF, +1). Since s.2~171 from the experimental zero-sound velocity,' we can expand

£ in powers of s,"2 and deep only the first term. We have not evaluated ¢ for the BW p-wave state
because the result for the zero-sound attenuation is in any case incompatible with experiment. Instead
we have calculated the attenuation for the Anderson-Morel state, which according to Anderson and
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Brinkman'® is a possible equilibrium state. ¢ is found to be

cos?0)? w* (A, A *cos?0/A )2

w?[ (X, cos?0),,J?

3 apy L Qg
g:soz%“,?—()\a cos®0) + )

where cosf is ¥t *q/vyq, the brackets denote
angular averages, and A,,,»=JdQ Y,"\¥,™', etc.
(the Y,™’s are spherical harmonics whose axis
is parallel to the axis of the gap). The zero-
sound attenuation Aa,=-gIm(s/s,) is directly
related to the imaginary part of A. If in the ex-
pression for A we drop the terms involving n as
being of higher order in s,"2, we find

Im\g, = 7| A%l o2 (w? - 4| Agl *) "V ? tanh (w/4T)/w

for w?>4|At|,? and zero otherwise. For T =T,
we have

ReMt = 7| At o2 (4] A] % ~ w?) "2 tanh(w/4T)/w

for w?<4|At|,? and zero otherwise, Not too sur-
prisingly, it turns out that Aa, depends strongly
on the relative orientation of  and the axis of
the gap. While for parallel orientation (Aa,")
the attenuation peak is small and broad, it is
extremely narrow and high for perpendicular
orientation; this shows up in the angular aver-
age (Aay (Fig. 1). It is not clear whether the
axis of the gap orients itself by residual inter-
actions, e.g., with the container walls, the zero
sound itself, etc., or whether there exist ran-
domly oriented domains. It is, however, likely
that at least in a magnetic field the dipole inter-
action plays an important role. This would favor
orientation of the gap axis perpendicular to the
field,'® which puts no restriction on the gap ori-
entation with respect to q, as long as the mag-
netic field H is perpendicular to 4, as in the ex-
periments.! Further experiments in which the
angle between d and the magnetic field is varied
would help to resolve the problem of orientation.
A comparison of theory and experiment (circles
in Fig. 1) shows that the agreement is fair, but
not completely satisfactory. We can expect spin
fluctuation effects to modify the results some-
what. We have not plotted the attenuation in a
magnetic field, because it is simply obtained by
superposing two shifted zero-field attenuation
curves with different weight according to the dif-
ference in spin population. The insert in Fig. 1
shows the strong frequency dependence of the
attenuation, the peak height varying approxi-
mately with w®. The sound velocity ¢, decreases
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,;onotonically with decreasing temperature (Fig.
1) until a frequency-dependent saturation value
is reached for 7 <T, (where A =3). For w, T
«<T,., we recover the Anderson-Bogoliubov mode
with s?= (5F, +3)GF, +1), as predicted by Leg-
gett.!*

I wish to acknowledge helpful discussions with
Professor D. M. Lee, Professor R. C. Richard-
son, Professor V. Ambegaokar, Professor N. D.
Mermin, and Mr. J. W, Serene. I am indebted
to Dr. T. C. Padmore for help with the numer-
ical calculations.

*Work supported in part by the U.S, Office of Naval
Research under Contract No. N00014-67-A-0077-0010,
Technical Report No, 33,

fAddress after 1 April 1973: Max-Planck Institut fiir
Physik, Munich, Germany.

ID. T. Lawson, W. J. Gully, S. Goldstein, R. C. Rich-
ardson, and D, M. Lee, Phys. Rev. Lett. 30, 541 (1973).

D, Pines and P, Noziéres, The Theory of Quantum
Liquids (Benjamin, New York, 1966).

SR. A. Webb, T. J. Greytak, R, T. Johnson, and J. C.
Wheatley, Phys. Rev. Lett, 380, 210 (1973).

4T, A, Alvesalo, Yu. D. Anufriyev, H. K. Collan, O, V.
0. V. Lounasmaa, and P, Wennerstrom, Phys. Rev.
Lett. 30, 962 (1973).

D. D. Osheroff, W. J. Gully, R. C. Richardson, and
D. M. Lee, Phys. Rev. Lett. 29, 920 (1972).

SA. J. Leggett, Phys. Rev. Lett, 29, 1227 (1972).

P, W. Anderson and C. M. Varma, to be published.

SR. Balian and N. R, Werthamer, Phys. Rev. 131,
1553 (1963).

%V. Ambegaokar and N, D, Mermin, Phys. Rev. Lett.
30, 81 (1973). See also C. M. Varma and N, R, Wer-
thamer, Bull. Amer, Phys. Soc. 18, 23 (1973).

P, W. Anderson and W. F, Brinkman, Phys. Rev.
Lett. 30, 1108 (1973).

p, W. Anderson and P. Morel, Phys., Rev. 123, 1911
(1961),

120, Betbeder-Matibet and P. Noziéres, Ann, Phys.
(New York) 51, 392 (1969).

13This holds for a slightly modified Anderson-Morel
solution with Apy=A4 < Yii(l?e), which appears to be low-
est in free energy. I am indebted to Professor N, D.
Mermin for pointing this out to me.

HMgimilar equations have been derived by Leggett for
the s-wave case and for w <A, ¢<< (A/ep)kr: A. J.
Leggett, Phys. Rev. 147, 119 (1966).



