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case the continuity equation (a} and the superfluid-ac-
celeration equation (4} provide a complete description
and in fact, are isomorphic to the classical Euler hy-
drodynamics at O'K. Thus a small disturbance travels

at velocity (pBp/&p} which is the velocity of ordinary
sound.

VJ. R. Schrieffer, Theory of Supe&conductivity (Ben-
jamin, New York, 1964).
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It is shown that the anomalous zero-sound attenuation at the transition "&"observed re-
cently in liquid He at about 2.7 mK can be understood by postulating pairing in a state of
odd relative angular momentum. The attenuation is found to depend strongly on the angu-
lar variation and orientation of the gap parameter, providing information on the precise
nature of the pairing. It is concluded that (1) Balian-Werthamer P-wave pairing can be
ruled out, and (2) Anderson-Morel P-wave pairing is possible.

We have calculated a contribution to the zero-
sound attenuation in a postulated superfluid state
of 'He, which is caused by direct absorption of
phonons by the Cooper pairs, with a view to ex-
plaining the recently found anomalies in the zero-
sound attenuation of 3He below the transition "A."~

Although both absolute value and temperature de-
pendence of the calculated attenuation are of the
correct order of magnitude, it seems that none
of the equilibrium states discussed below leads
to satisfactory agreement with experiment. The
reason for this preliminary report is that our re-
sults suggest zero-sound-attenuation measure-
ments as a tool for investigating the angle de-
pendence of the gap parameter. On the basis of
the existing data. some general conclusions can
be drawn, which aid further theoretical searches
for the nature of the equilibrium state of super-
fluid He.

It is known from the theory of normal Fermi
liquids~ that zero sound can be damped in two

ways. The usual mechanism, which accounts for
the attenuation in normal He, is collision damp-
ing. In the superfluid state, close to the phase
transition, the corrections to the normal-state
results are small, of order (I& I')/(vT), where
(I& P) is an appropriate angular average of the

gap parameter at temperature T. Furthermore,
since the expression for the (collision-induced)
zero-sound attenuation involves multiple integra-
tions it can be expected to vary smoothly with
temperature on a scale given by T, , whereas the
observed anomalous attenuation is confined to a
small region within some 10 2T, of the transition

temperature. It therefore seems reasonable to
identify the experimentally observed background
attenuation with collision damping. Another mech-
anism for zero-sound attenuation is "Landau
damping": the direct absorption of phonons by
pairs of single-particle excitations. There is no
Landau damping in the normal state for reasons
of energy and momentum conservation, because
the zero-sound velocity in 'He is much greater
than the Fermi velocity. In the superfluid state,
the absorption of a phonon by a Cooper pair,
which subsequently breaks up into two quasipar-
ticles of nearly opposite momenta, takes place
whenever the energy conservation requirement

is met (~ is the phonon frequency, E, the BCS
single-particle energy; I=As =1). We have ne-
glected the phonon momentum q in Eq. (1), which
would lead to small corrections. For sound fre-
quencies such that ~ «T, (in Ref. 1, &u = 2s x10'
sec '= 0.48 mK and T, = 2.7 mK), Eq. (1) can be
satisfied only very close to T, .

At present there exists no complete equilibrium
theory for the newly discovered phases of SHe.
There is accumulating evidence ~ that liquid He
undergoes a phase transition into a BCS-type
state, where the pairing occurs in a state of odd
relative angular momentum L (spin triplet). Up
to now the more detailed discussions of spin-trip-
let pairing have been concentrated on the p-wave
case. Balian and Werthamers (BW) have shown
that for spin-independent p -wave interaction the
isotropic solution of the gap equation belongs to
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cf»„8(q, (u)= fate "'&&ak „'(t)~»,8(t)&, cg», (q, ~)=Jdt'e ' '&&a k „(t)ak,s(t)&,

~sk, ns(q~ ~) ~ fkn, k'n'~fk' n'8(q& +)~ ~+7», n8%& +) Zk'Rkn k'B~Ak', nB(4 +)
k', e'

Here fk„k & is the usual Fermi-liquid interaction and gk„k, s is the pairing interaction. The quantity
5e], also contains the direct energy gain in an external field. c]-, is the equilibrium quasiparticle ener-
gy matrix

and the equilibrium distribution function ~n for states with diagonal 4„8 and for BW-type states with-
out magnetic field is given by n~ =-,' - e„'8„where 8, = tanh(E, /2T)/2E, and E, 2= e~ +b, -k6 k .t

In order to solve Eq. (2) we assume as usual that the energy dependence of the interaction param-
eters f», and g» is negligible near the Fermi surface. We solve for of and 5g in terms of 5e and
M, and operate with pk. s5fk„k.a and pk. gk„»,6, respectively, on these. The result, after expanding
for q «k& and e «e~, is

x ([rt/(~ - ri)](l. —2zke)6e» 8 —&k g(&& » s+ &&» 8) - z (~+1)~» 8(~n ~*- tk && ) k a] ~

~&»ma+(4&} 'f&~k G»nk sf ' 8» s«» t'~» as= «&) 'J~fl~k~ka, k 8~» n

X(-—b.», 8[(w+r()be» 8+((a) -q)bek 8]-2(u) —q -2~tkk.
~

}M,».„8+(EM/A)», „S], (3b}

whe~e Ikl = IK I =kF, rt = v„, q (v, is the quasiparticle velocity on the Fermi surface), E»„k,a = v(0)
& fk„k.8, G-„„k.s = —,

' v(0)gk„».6 [v(0) is the density of states of both spins], &uo is the cutoff parameter
appearing in the gap equation. We have assumed 5e„s as well as {5b.h )„8 to be diagonal. A. k„ is given
by

~» = 2 IA ~ J tR» [4) 8» +7PE» d8» /de»]D»

For 6 =0 the equation for 5e Ieduces to the correct result for a normal Fermi liquid. Vile now ex-
pand Eqs. {3)in spherical harmonics and adopt the usual approximation of setting the Fermi-liquid
parameters F, equal to zero for t ~ 2. In the case of p-wave pairing, we can also set 6, =0 for t » 2
[for odd I. pairing, by inspection of Eq. (3b), even t components of 6b, do not couple to be and we can
set 6, =0 for even t]. By virtue of the gap equation

&x s= f ' «t (4&) 'f&tlx ~w x 88m 8&x a

the dependence on 6 drops out of Eq. (3b). For any particular choice of b, we can now solve Eqs. (3).
The resulting dispersion relation is {s=&@/vFq)

s' = s,' [1 + $ (1 + ~ F,],
with s,'= {3F,+ —', ){SF,+1). Since s,'=171 from the experimental zero-sound velocity, ' we can expand
$ in powers of so ~ and deep only the first term. We have not evaluated $ for the BW P-wave state
because the result for the zero-sound attenuation is in any case incompatible with experiment. Instead
we have calculated the attenuation for the Anderson-Morel state, which according to Anderson and



VOLUME 30, +UMBER 23 PHYSICAL REVIEW LETTERS 4 JuNs 1973

Brinkman" is a possible equilibrium state. $ is found to be

3 ) (, (A cos'0)' cu'(A. 6„*cos'0/6„)' to'[(7 cos'8)„]'
S,' I

" (Z,) [a '(X ) —2(t a„I'X„)] [to'7„—2Z„+ e„—e„]
where cos& is vy ~ q/v~q, the brackets denote
angular averages, and A. „„=fdicY,"*A.Y,", etc
(the Y,"'s are spherical harmonics whose axis
is parallel to the axis of the gap). The zero-
sound attenuation inc = —qIm(s/so) is directly
related to the imaginary part of A. . If in the ex-
pression for A. we drop the terms involving g as
being of higher order in so, we find

for ms &4~by~ „' and zero otherwise. For T = T,
we have

Rely =n~6y( (4~6y(~2 —&u )
' tanh(to/4T)/to

for tos&4~4y~„' and zero otherwise. Not too sur-
prisingly, it turns out that ~a, depends strongly
on the relative orientation of q and the axis of
the gap. While for parallel orientation (ho.'o")
the attenuation peak is small and broad, it is
extremely narrow and high for perpendicular
orientation; this shows up in the angular aver-
age (An/ (Fig. 1). It is not clear whether the
axis of the gap orients itself by residual inter-
actions, e.g. , with the container walls, the zero
sound itself, etc. , or whether there exist ran-
domly oriented domains. It is, however, likely
that at least in a magnetic field the dipole inter-
action plays an important role. This would favor
orientation of the gap axis perpendicular to the
field, ' which puts no restriction on the gap ori-
entation with respect to q, as long as the mag-
netic field H is perpendicular to q, as in the ex-
periments. ' Further experiments in which the
angle between q and the magnetic field is varied
would help to resolve the problem of orientation.
A compa. "ison of theory and experiment (circles
in Fig. 1) shows that the agreement is fair, but
not completely satisfactory. We can expect spin
fluctuation effects to modify the results some-
what. We have not plotted the attenuation in a
magnetic field, because it is simply obtained by
superposing two shifted zero-field attenuation
curves with different weight according to the dif-
ference in spin population. The insert in Fig. 1

shows the strong frequency dependence of the
attenuation, the peak height varying approxi-
mately with co . The sound velocity co decreases

! monotonically with decreasing temoerature (Fig.
1) until a frequency-dependent saturation value
is reached for T «T, (where X = 2). For &u, T
«T„we recover the Anderson-Bogoliubov mode
with so = (sEo+ —,')(3E~+ I), as predicted by I eg-
gett. '4
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