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Collisional Quenching of Metastable Hydrogen Atoms by Rare Gases
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The collisional quenching of slow metastable hydrogen atoms by rare-gas targets is
analyzed in the framework of a pseudopotential method. We find that the experimental re-
sults of Kass and Williams are in full agreement with theory if the anomalously large
elastic scattering is taken into account.

Recent experiments by Kass and Williams' on
the collisional quenching of metastable hydrogen
atoms by noble gases led those authors to con-
clude that there is at the present time a discrep-
ancy between their experimental results for He
and the theoretical calculation of Byron and Ger-
sten. ' In this Letter we point out that, in fact,
the theory and experiment are in full agreement.
We trace the apparent discrepancy to the neglect
of the contribution of large-angle elastic scatter-
ing. In their experiment metastables scattered
through angles larger than 30 mrad were unde-
tected and hence produced an effect equivalent to
quenching. We show that a proper inclusion of
this wide-angle scattering contribution brings the-
ory and experiment into satisfactory agreement,
although it would certainly be desirable to have
experiments available which would separate the
contribution of elastic and inelastic scattering.
We also extend our previous theoretical work to
include the other noble gases.

We propose to study this process using the for-
mulation developed in Ref. 2, but with several
important modifications. In Ref. 2 we reduced
the problem of finding the quenching cross sec-

tion to solving the set of coupled equations

dn ~"~ i g M„„n„"
dZ g „~~I

for all n & I, I being the collection of degenerate
states 2s, 2p+, 2p„and 2p, subject to the bound-
ary condition o.i"~(z = —~) = 0„„.The matrix ele-
ments were given by

(@ V~ ) P (9 n~ VVI (Pm~ VV'n')
(2)

m&I fm

and y and e were the eigenvectors and eigen-
values, respectively, of the internal system. In
this work we propose to eliminate the noble-gas
target in favor of a pseudopotentia1. obtained from
low-energy electron scattering data, so we will
use q and e to denote the eigenvectors and ei-
genvalues of the hydrogen atom; thus V will rep-
resent an electron and a proton interacting with
a target whose effects are simulated by a pseudo-
potential. We use

V(r, R) = V'(r —R) + V~(R)

+R (R —r)o'/R'IR- rl', (&)

where n is the dipole polarizability of the noble
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gas, r denotes the internal coordinate of the hy-
drogen atom, and R represents the internuclear
variable. V' is the electron-noble-gas pseudopo-
tential, ' and V is the proton-noble-gas pseudopo-
tential. The remaining term in Eq. (3) is present
to take into account the induced nature of the long-
range part of the atom-atom potential, thus guar-
anteeing the proper Van der Waals behavior of

the interatomic potentials. Obviously, at small
distances in both R and (R —r~ this term should
be cut off appropriately.

A final modification which we shall make con-
cerns Eq. (2). Since for many noble gases the
pseudopotentials will be quite strong at small dis-
tances, we shall extend Eq. (2) to all orders of
perturbation theory via

M„„=(y„,Vy„)+(y„, VGOVy„)+(y„, VG0VGOVy„)+ ~ ~ ~,

where G, is given by

(4)

G =
0

m &1~2s- ~m

To evaluate Eq. (4) let us divide V into a short-range part and a long-range part, V= V»+V~s. Here
V~~ will contain the "tails" of V' and V~ and the interference term in Eq. (3). This term will be weak
and hence shall be treated to lowest order only:

M..'"=(V'. Vi~e. ).

V» will be large at small distances and hence must be treated beyond first order:

M ..'" = (O'. V» V") + (V'. V»GoV» W. ) + " .

(6)

(7)

Since V~(R) cannot contribute to inelastic transitions, we will not consider it as a part of V». With
M ' and M determined in this manner, we then setM =M ' +I

Now the short-range part of V' (defined to be equal to V' inside some radius R, and zero outside R,)
will be sharply peaked about r=R, so we rewrite Eq. (7) as

M„„"= y„*(R)y„(R)[fd'rV»'(r —R) + fd'xfd'r ' V»'(r R)GO—(r, r') V»'(r R) +—~ ~ ], ~

where in the vicinity of r = r', Go(r, r') can be written approximately as

1
G, (r, r') = ——=—

2~ I r —r'
I

'

Thus,

M„„,&" =4vy„*(R)q „.(R)g V,„'(p)T,„(p)p'dp,

where T»(p) satisfies the integral equation

7 ss(p) = 1 —2f, (p ) 'V»'T»(p') p' "p'

(10)

where

The function 7.» will be recognized as the zero-energy, s-wave scattering wave function. If we define
a» to be the scattering length due to the short range potential V»', then M ' is given simply by

M„„.~" = 2va, ~ y„*(R)cp„.(R),

asm=2 Vs~ »sa ~ ~ d~.

If the long-range part of V' is negligible, then a»= a, where a is the scattering length for the full po-
tential V', and our result of Eq. (10) reduces to the Breit-Fermi results obtained previously. ' Howev-
er, the neglect of V~s' is fairly well justified only in the case of helium, where the polarizability is
very small while the scattering length is of order of unity. Already for neon the assumption a»=a
fails badly.

For some of the noble gases (argon, krypton, and xenon) V' is not available so in this case we pro-
ceed as follows: We note that the scattering length due to V' is given by a =2/,"V'(p)r(p)p'dp, where
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T(p) is the zero-energy, s-wave function for scattering by the full potential V'. We rewrite this as

a =2f, 'I, ;(p)T(p)p'dp+2J. 1.;(p).(p)p'd p

In the second integral, we write V»'(p) = —n/2p' and T(p) =I, i.e., we replace them by their asymp-
totic values. Also, if we assume that in the small-distance region T(p) = T sR(p), then we have

~ OQ

a = a,R —n dp/p' =a,R —n/R„
C

so we may write

a,„=a+ n/R, . (12)

(14)

Thus, if the basic parameters a and n are known experimentally (as they are for helium, neon, and
argon), then ass may be readily estimated. In the cases of helium and neon, where we have pseudopo-
tentials in addition to a and n, as+ as determined by Eq. (12) agrees satisfactorily with ass as deter-
mined by Eqs. (9) and (ll). As we should hope, the full matrix element M„„ is not particularly sensi-
tive to the choice of R, for R, in the range 2 —5 a.u. , Mi'1 being obtained from Eq. (6) by numerical in-
tegration.

With the matrix elements evaluated, the set of four coupled equations [Eq. (I)] may be solved by stan-
dard numerical methods for the n„" . .The quenching cross section is given by

vo=2vf Q~n, ~ '"'(b, z= )~'bdb. (13)

The quantities n„1'1(b, z = ~) oscillate rapidly as b becomes less than some characteristic impact pa-
rameter b, . Inside b„Eq. (13) was evaluated by Monte Carlo methods; outside b„ordinary numeri-
cal integration was performed.

In comparing the results for o~ with experiment in the range of velocities covered by Kass and Wil-
liams, ' that is, from v = 8X10' cm/sec to v =12&&10' cm/sec, we find that our results are consistent-
ly too low. Since the experiment of Kass and Williams treated any atom scattered through angles
greater than about 31 mrad as being quenched, ' we are led to suspect that perhaps the effects of elas-
tic scattering are not negligible. To investigate the effects of elastic scattering, we proceeded as fol-
lows. The elastic amplitude was evaluated in the eikonal approximation, that is,

f,&

——(k/i) f J,(b,b)[n„" (b, z = ~) —1jbdb.

The total cross section 0~ was obtained from
the optical theorem, and the total elastic cross
section 0,&

was found by subtracting cr from a ~.
The eikonal amplitude was used to calculate the
small-angle scattering for 0 &31 mrad. The dif-
ference between cr„and the small-angle elastic
scattering was added to o to give a total effec-
tive quenching cross section cr'

Direct experimental verification of our elastic-
scattering results is not possible at the present
time. Kass and Williams' felt that elastic scat-
tering did not affect their results, basing their
assertion on the fact that they were able to follow
their scattered beam shape out to a point where
it had fallen by an order of magnitude from its
central value. However, it is characteristic of
the hard-sphere type of results we find that the
elastic differential cross section has a large
central peak which contains the bulk of 0,&, but
there is a long tail which falls off very slowly
and contains the rest of the elastic scattering. It
is unlikely that Kass and Williams would have de-
tected such a tail. It is hoped that in future ex-

perimental work attempts will be made to see
elastic effects. This could be accomplished by
making a careful study of large-angle differential
cross sections. Alternatively, a less complete
experiment might involve the direct observation
of the Lyman quench radiation and its polariza-
tion. A typical elastic differential cross section
is shown in Fig. 1.

When the elastic contribution is added to 0,
the resulting values of cr' are in good agree-
ment with experiment, as is seen from Fig. 2.
The results for helium and neon were obtained
by using the pseudopotentials of Bottcher, ' al-
though the use of Eq. (12) would have sufficed.
The results for argon were obtained by taking a
= —1.65 a.u. and n =11.1 a.u. in Eq. (12). For
krypton, we are not aware of any experimental
scattering length, although the polarizability is
known to be 16.8 a.u. We decided to use values
of M„„.in this case given by multiplying M„„.for
argon by the ratio of the polarizabilities, 16.8/
11.1 =1.5. This is probably not too bad an as-
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FIG. 1. Differential cross section for the elastic
scattering of H(28) by helium. The scattering angle is
in milliradians.

~(IO~ cm/sec)

FIG. 2. Effective cross sections for the quenching of
H(2&) by helium, neon, argon, and krypton. Solid
curves, experimental results of Ref. 1; circles, results
of this paper. Each curve has an error bar to give an
idea of the experimental error. The figure for argon
also shows (solid squares) the results obtained by us-
ing only the "].ong range" part of the matrix elements.

sumption since the results for argon are predom-
inantly controlled by the polarizability. This is
illustrated in Fig. 2 where we show for argon, in
addition to our results based on the full M „„,
the results obtained by using just M„„.', the
"long-range" part of M„„. The values of cr@ so
obtained are only about 30% larger than those ob-
tained with the full M„„. This is in contradistinc-
tion with the case of helium, where because of
the smallness of a the quenching is dominated by
M~', the "short-range" part of M. Finally it is
worth mentioning that at the lowest velocities
shown in Fig. 2, the contributions of elastic scat-
tering are nearly the same as the contributions

of pure quenching in the cases of neon, argon,
and krypton.
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