¹¹R. Comès, M. Lambert, and H. R. Zeller, to be published.

¹²In this connection see S. Barašić and K. Saub, to be

published; M. J. Rice and S. Strässler, to be published. ¹³N. W. Ashcroft, J. Phys. C: Proc. Phys. Soc., London 1, 232 (1968).

Supertransferred Hyperfine Interaction: Perturbed Angular Correlation of ^{111m}Cd in KNiF₃, KCoF₃, and RbMnF₃⁺

H. H. Rinneberg and D. A. Shirley

Department of Chemistry and Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

(Received 9 April 1973)

The perturbed angular correlation of ^{111m}Cd in antiferromagnetic KNiF₃, KCoF₃, and RbMnF₃ has been observed. The Cd hyperfine fields are interpreted to yield fractional spin densities of the Co-F and Mn-F bonds, $f_{\sigma}=2.6$ and 3.8%, respectively. The latter value disagrees with neutron diffraction values.

Perturbed angular correlation (PAC) of γ rays is a valuable tool for the determination of nuclear properties of radioactive isotopes.¹ In recent years it has been extensively applied to the study of extranuclear properties.² Until now, however, this technique has not been employed in what appears to be one of its most powerful applications: the study of supertransferred hyperfine structure in transition-metal salts. The PAC isomer 111m Cd, for example, provides a probe with qualities not available elsewhere. It is a dipositive, diamagnetic impurity that can be detected at extremely low concentrations. In this Letter we report the time-differential perturbed-angular-correlation spectra of ^{111m}Cd as a dilute impurity in KNiF₃, KCoF₃, and RbMnF₃. Well-resolved magnetic hyperfine structure was observed in each case. This was interpreted to yield new estimates of the fractional spin densities f_{σ} of the Co-F and Mn-F bonds. The former $(f_{\sigma} = 2.6\%)$ agrees well with earlier values, but the latter $(f_{a} = 3.8\%)$ stands in sharp disagreement with an earlier estimate of 1.2% based on neutron diffraction data. The covalent character of the Mn-F bond, as obtained from the earlier result, was anomalously low. Our result would remove this anomaly.

The perovskites KNiF₃ ($T_N = 253.5^{\circ}$ K) and RbMnF₃ ($T_N = 82.9^{\circ}$ K) are simple cubic antiferromagnets (type G). KCoF₃ has the same magnetic structure, but with the magnetic transition a slight tetragonal lattice distortion occurs. Within experimental error, however, no deviation of the observed spectra from the simple cubic case (i.e., no quadrupole splitting) was found. In the following we neglect this distortion. The Cd^{2+} probe has as its nearest magnetic neighbors six transition-metal ions all belonging to the *same* sublattice in the antiferromagnetic state. The magnetic field induced at the site of the Cd nucleus perturbs the angular correlation of its well-known³ 150-247-keV cascade. The corresponding attenuation coefficient for a polycrystalline sample is⁴

 $A_{22}G_{22}(t) = \frac{1}{5}A_{22}[1 + 2\cos(2\pi\nu_{\rm L} t) + 2\cos(4\pi\nu_{\rm L} t)],$

where $\nu_{\rm L} = g_N \beta_N H_{\rm hf}$ is the Larmor frequency of the ¹¹¹Cd nucleus in the 247-keV state $(I = \frac{5}{2}, g_N = -0.7952 \text{ nm}, \tau_N = 84 \text{ nsec})^{\mathbf{3}_0 \cdot 5}$ and $H_{\rm hf}$ is the hyperfine field.

The PAC spectra of Cd in KNiF₃, KCoF₃, and RbMnF, at 4°K are shown in Fig. 1. We include the spectrum of RbMnF₃ at 77°K. The decrease in sublattice magnetization with temperature is shown by the decrease of the Larmor frequency. The spectra were taken with a conventional fastslow setup, described earlier.⁶ NaI(Tl) detectors $(1 \times 1\frac{1}{2} \text{ in.}^2)$ were used. ¹¹¹ Cd was obtained by neutron irradiation of ¹¹⁰CdO. After the irradiation the oxide was converted to the fluoride and subsequently melted with zone-refined $KNiF_3$, $KCoF_3$, and $RbMnF_3$ in a Pt crucible. No dependence of the Larmor frequencies on the concentration of Cd was observed. At higher concentrations a decrease of A_{22}^{eff} was found. A concentration of 0.05-mol% Cd was chosen for KNiF₃ and KCoF₃ and 0.4% for RbMnF₃. The observed hyperfine fields at the Cd nucleus $(4^{\circ}K)$ are 105.6 ± 1.5 kOe (KNiF.), 74.4 ± 1.0 kOe (KCoF₃), and 113.5 ± 1.5 kOe (RbMnF₃). Since the reduced temperatures $T/T_{\rm N}$ are less than 0.05 at 4.2°K, these values for the hyperfine

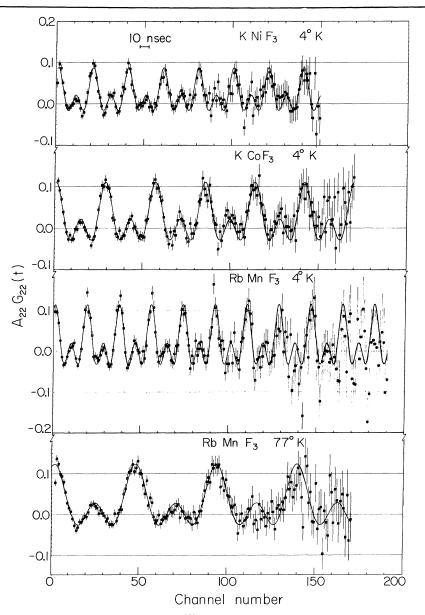


FIG. 1. Time-differential PAC spectra of 111m Cd in antiferromagnetic KNiF₃, KCoF₃, and RbMnF₃.

fields can be taken as very close to the 0° K values.

The hyperfine fields at the Cd nuclei are presumably caused by supertransferred spin densities in Cd orbitals (for general discussions of covalency and superexchange see Šimánek and Šroubek⁷ and Owen and Thornley⁸). Because of the cubic symmetry, all dipole fields cancel. Similarly, spin densities transferred into p or d orbitals of Cd²⁺ do not contribute to the hyperfine field, except via core polarization. We neglect these contributions, since they should be much smaller than those caused by spin densities directly transferred into s orbitals of Cd^{2+} .

We shall discuss the observed hyperfine fields in terms of a simple three-atom superexchange model M^{++} -F⁻-Cd⁺⁺ (M^{++} = Ni²⁺, Co²⁺, Mn²⁺). It is similar to the model used by Owen and Taylor⁹ to explain the hyperfine field at an Al site in LaAlO₃/Fe³⁺, measured by electron-nuclear double resonance. It is well known from NMR measurements^{10,11} that there are spin densities f_s , f_{σ} , and f_{π} in fluorine 2s, $2p_{\sigma}$, and $2p_{\pi}$ orbitals, arising from overlap and covalency in the transition-metal-fluorine bond. Since f_s is usually much smaller than the densities in p VOLUME 30, NUMBER 22

orbitals, we consider only the effects of overlap and covalent bonding of p orbitals with Cd nsorbitals. Because of symmetry only f_{σ} orbitals can give nonzero contributions to $H_{hf}(Cd)$ through the $180^{\circ} M^{2+}$ -F⁻-Cd²⁺ bond. The hyperfine field at the Cd nucleus is therefore proportional to f_{α} , independent of which s orbitals of Cd are used for overlap and independent of the amount of bonding with the 5s orbital. The M^{2+} -F⁻ bond lengths, and presumably therefore the Cd^{2+} -F bond lengths, are similar (2.01 Å in KNiF₃,¹² 2.03 Å in KCoF₃,¹² 2.12 Å in RbMnF₃¹³). To a good approximation the induced hyperfine fields on Cd^{2+} should be related to the fractional spin densities in the F^{-2p} shell by equations of the form

$$\frac{H_{\rm hf}({\rm Cd \ in \ KCoF_3})}{H_{\rm hf}({\rm Cd \ in \ KNiF_3})} = \frac{\frac{1}{2} \langle\langle S \rangle / S \rangle_{\rm Co}}{\frac{1}{2} \langle\langle S \rangle / S \rangle_{\rm Ni}} \frac{f_{\sigma}^{\rm Co}}{f_{\sigma}^{\rm Ni}}$$

Here the different zero-spin deviations have been taken into account. The spin expectation values $\langle S \rangle$ can be calculated using spin-wave theory⁹ as $\langle S \rangle = S - 1/2z$ (z = 6). The accuracy of this estimate is much less important here than for neutron diffraction studies, in which an *additive* correction of the order of $1 - \langle S \rangle / S$ must be made in determining f_{σ} . Since f_{σ}^{Ni} is known unambiguously from NMR ($f_{\pi}^{\text{Ni}} = 0$, $f_{\sigma}^{\text{Ni}} = 3.8\%$)¹¹ we obtain for KCoF₃ and RbMnF₃

 $f_{\sigma} = 2.6\%$ (Co-F), $f_{\sigma} = 3.8\%$ (Mn-F).

The first value is in good agreement with the value $(2.4\pm1.0)\%$ of Thornley, Windsor, and Owen¹⁴ which was obtained by a detailed analysis of the fluorine superhyperfine structure of the CoF₆⁴⁻ EPR spectrum.

Analyzing the ¹⁹F NMR in KMnF₃, Shulman and Knox¹⁵ obtained for the spin densities in the fluorine 2p orbitals $f_{\sigma} - f_{\pi} = 0.35\%$. Later Walker and Stevenson¹³ found nearly the same value (0.33%) in RbMnF₃. Comparing the f_{σ} value for $\operatorname{NiF_6}^{4^-}(f_{\sigma}=3.8\%, f_{\pi}=0)$ and the f_{π} value for $\operatorname{CrF}_{6}^{3^{-}}(f_{\pi} = 4.9\%, f_{\sigma} \approx 0)$ Shulman and Knox¹⁶ suggested that the small value of $f_{\sigma} - f_{\pi}$ generally found in manganese fluoro complexes is caused by nearly complete cancelation of f_{σ} and f_{π} . However, since the measurement of the hyperfine field at the fluorine nucleus yields only the difference $f_{\sigma} - f_{\pi}$, an independent measurement must be made to determine f_{σ} and f_{π} individually. This information was obtained from neutron diffraction. Alperin¹⁷ observed in antiferromagnetic NiO a contraction of the magnetic moment distribution below the free-ion value of Ni²⁺. A

similar situation was observed by Nathans, Pickert, and Brown¹⁸ who determined the moment distribution in antiferromagnetic MnF₂. These effects, which are caused by the covalency of the transition-metal-ligand bond, were related to the fractional spin densities f_s , f_{σ} , and f_{π} in a theory developed by Hubbard and Marshall.¹⁹ Using this theory Alperin obtained for NiO f_{α} $+f_s = 6.0\%$, which reduces to 4.1% after correction²⁰ for zero spin deviation. Nathans, Will, and Cox^{21} reported for $\text{MnF}_2 f_s + f_{\sigma} + 2f_{\pi} = 3.3\%$. Using a different approach Nathans, Will, and Cox²¹ determined the fractional spin densities in antiferromagnetic MnO by measuring the total intensity of the low-angle magnetic powder diffraction peaks $(f_s + f_{\sigma} 2f_{\pi} = 3.3\%)$. Applying this technique to NiO (and MnO) Fender, Jacobson, and Wedgwood²⁰ found in both cases satisfactory agreement with the earlier reported values. Two conclusions were drawn from these results: (1) Using $f_s = 0.5\%$ and $f_{\sigma} - f_{\pi}$ obtained by NMR, Nathans, Will, and Cox²¹ calculated for MnF₂ $f_{\sigma} = 1.2\%$. Mn²⁺ was believed to have an abnormally low covalent character. (2) Comparing $f_{\sigma} + f_s$ in KNiF₃ (4.3%, NMR) and NiO (4.1%, neutron diffraction) and $f_s + f_{\sigma} + 2f_{\pi}$ in MnF_2 (3.3%) and MnO (3.3%), both obtained by neutron diffraction, oxygen and fluorine were believed to be equally covalent.

We seriously question both conclusions. The value of f_{α} (3.8%) for the Mn-F bond, reported in this Letter suggests that Mn²⁺ is as covalent as Ni²⁺. While the details of interpretation of all the methods for determining f_{σ} are subject to question on the basis of oversimplification, it would be very difficult to reconcile the relatively large hyperfine field at Cd in RbMnF₃ with an f_{σ} value as low as 1.2%. It appears in fact that in all cases (NiO, MnO, and MnF₂) neutron diffraction yields spin densities lower than expected from hyperfine-interaction studies. A similar observation was made by Tofield and Fender,²² who determined the spin densities of oxygen in LaCrO₃ by neutron diffraction, finding f_{π} =1.6%, which is a factor of 3 lower than the resonance results. Until this systematic discrepancy is definitively resolved, conclusion (2) above is in doubt. It should also be noted that Henning's²³ analysis of the hyperfine structure of Mn²⁺, based on an observation by Van Wieringen,²⁴ yields results that flatly contradict both conclusions (1) and (2), i.e., in fluorides Mn^{2+} is about 5% covalent, and in oxides it is distinctively more covalent.

VOLUME 30, NUMBER 22

Covalency is a basic (albeit rather qualitative) concept in chemistry, and fractional spin-density parameters play a crucial role in the theory of superexchange. Because the hyperfine field at the anion nucleus is determined by the difference $f_{\sigma} - f_{\pi}$, no further information can be expected from NMR, EPR, or electron-nuclear double-resonance investigations of the ligand (F^{*}) hyperfine structure. It seems preferable to measure the hyperfine field at a cation nucleus. Since paramagnetic cation-diamagnetic cation (180°) superexchange is σ bond specific, these measurements are probably more suitable than the measurement of the hyperfine interaction of the magnetic ion itself. By using ^{111m}Cd as a diamagnetic probe, one can take advantage of the high sensitivity of the PAC method to study hyperfine fields at Cd probe nuclei at very small concentrations in antiferromagnetic lattices. This should provide new, independent data to help resolve the existing spindensity discrepancies.

One of us greatly acknowledges the discussion with Dr. E. Šimánek.

†Work performed under the auspices of the U.S. Atomic Energy Commission.

¹H. Frauenfelder and R. M. Steffen, in *Alpha-, Beta-,* and Gamma-Ray Spectroscopy, edited by K. Siegbahn (North-Holland, Amsterdam, 1965), Vol. 2.

²D. A. Shirley and H. Haas, Amu. Rev. Phys. Chem. <u>23</u>, 385 (1972).

³C. M. Lederer, J. M. Hollander, and I. Perlman, *Table of Isotopes* (Wiley, New York, 1967), 6th ed.

⁴E. Matthias, S. S. Rosenblum, and D. A. Shirley, Phys. Rev. Lett. 14, 46 (1965).

⁵V. S. Shirley, in *Proceedings of the Conference on*

Hyperfine Interactions Detected by Nuclear Radiation, Rehovot and Jerusalem, September 1970, edited by G. Goldring and R. Kalish (Gordon and Breach, New York, 1972).

⁶H. Haas and D. A. Shirley, to be published.

⁷E. Šimánek and Z. Šroubek, in *Electron Paramagnetic Resonance*, edited by S. Geschwind (Plenum, New York, 1972).

 $^8 J.$ Owen and J. H. M. Thornley, Rep. Progr. Phys. 29, 675 (1966).

⁹J. Owen and D. R. Taylor, J. Appl. Phys. <u>39</u>, 791 (1968).

¹⁰R. G. Shulman and V. Jaccarino, Phys. Rev. <u>108</u>, 1219 (1957).

¹¹R. G. Shulman and S. Sugano, Phys. Rev. <u>130</u>, 506 (1963).

¹²A. Okazaki, T. Suemune, and T. Fuchikami, J. Phys. Soc. Jap. <u>14</u>, 1823 (1959).

¹³M. B. Walker and R. W. H. Stevenson, Proc. Phys. Soc., London <u>87</u>, 35 (1966).

¹⁴J. H. M. Thornley, C. G. Windsor, and J. Owen, Proc. Roy. Soc., Ser. A 284, 252 (1965).

¹⁵R. G. Shulman and K. Knox, Phys. Rev. <u>119</u>, 94 (1960).

¹⁶R. G. Shulman and K. Knox, Phys. Rev. Lett. <u>4</u>, 603 (1960).

¹⁷H. A. Alperin, Phys. Rev. Lett. <u>6</u>, 55 (1961).

¹⁸R. Nathans, S. J. Pickert, and P. J. Brown, J. Appl. Phys. 34, 1182 (1963).

¹⁹J. Hubbard and W. Marshall, Proc. Phys. Soc., London 86, 561 (1965).

²⁰B. E. F. Fender, A. J. Jacobson, and F. A. Wedg-wood, J. Chem. Phys. 48, 990 (1968).

²¹R. Nathans, G. Will, and D. E. Cox, in *Proceedings* of the International Conference on Magnetism, Nottingham, England, 1964 (The Institute of Physics and The Physical Society, London, 1965), p. 327.

²²B. C. Tofield and B. E. F. Fender, J. Chem. Phys. Solids <u>3</u>1, 2741 (1970).

²³J. C. Henning, Phys. Lett. 24A, 40 (1967).

²⁴J. S. Van Wieringen, Discuss. Faraday Soc. <u>119</u>, 118 (1955).