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and superconductivity could both be determined
at the same temperatures with two different tech-
niques, namely, Mossbauer effect and mutual in-
ductance.

We thank Professor M. Peter (Geneva. ) for a
most pleasant and enlightening discussion. The
cooperation of Professor H. Gabriel in dealing
with the problems of relaxation was very helpful.
This work has been supported by the Bundesmin-
isterium fur Wissenschaftliche Forschung.
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By comparing the predictions of the weak-coupling BCS theory with a general Ginzburg-
Landau approach, we show that the weak-coupling model may give a qualitatively incor-
rect description of pairing with I- & 0. Specific examples of the errors the weak-coupling
model leads to are described for d- and p-wave pairing. In the latter case the genera1
Ginzburg-Landau approach has structure enough to account for the current discrepancies
between the weak-coupling predictions and the observed behavior of the low-temperature
transition in liquid He3.

We wish to point out that the weak-coupling
BCS theory lacks sufficient structure to give a
general description of the transition to a paired
state with any pair angular momentum L other
than I- =0.' The possibility of a failure of the
weak-coupling model has been raised by the work
of Ander son and 8rinkman, ' whose strong- cou-
pling analysis of p-wave pairing leads to a,n equi-
librium state differing drastically from the pre-
dictions of the weak-coupling model, and whose
properties appear to be more in accord with
those of the low-temperature A. phase of liquid
He, .' It remains to be seen whether the particu-
lar expansion of Ref. 2 will fully account for the
observed behavior of He„but regardless of the
ultimate success of that model, it is important
to emphasize, at a time when increasingly elab-

orate applications of the weak-coupling model to
I.g0 pairing are being made or contemplated,
that the weak-coupling approach may well give a
misleading and quite possibly seriously incorrect
description of the transition when I- g0.

To see why the weak-coupling model is unreli-
able when I go (as well as why the difficulty does
not arrive for s-wave pairing), one need only
compa, re the weak-coupling form for the free en-
ergy near T, with the general Ginzburg-Landau
form. ' We assume that T is close enough to T,
for the pairing to be in a state characterized by a
definite value of I-, determined by the most at-
tractive component of the effective pairing inter-
action. The order parameter is then a complex
scalar function of 0, ~,($), for even I-, and a 2

x 2 matrix of the form Z($) ~ a(io~), for odd I,
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where 6, or the vector 6 are linear combinations
of spherical harmonics of degree L.' Just below
the transition temperature, one must retain
terms up to fourth order in the order parameter,
not only to stabilize the free energy, but also to
resolve, at least in part, the highly degenerate
set of order parameters that become possible
at T, zoh, en Lc0.

In the weak-coupling model the free energy f,
has the form

dh JQP' Tr(Ja) ' Tr(~'~)'

where the upper line is for L even, and the lower
line for L odd. A more general expansion yields
a form with the same quadratic term but in which,
except for L =0, the quartic term is character-
ized not by one, but by many independent param-
eters. We illustrate some of the consequences of
this for the theories of d-wave and p-wave pair-
ing.

For L = 2 the order parameter has the form Ap

=Q&„B&,h&h„where B is a symmetric complex
matrix with zero trace. Because the free energy
must be invariant under rotations and gauge
transformations, the second-order term must
be proportional to Tr(B B). However, there are
three linearly independent fourth-order terms, '
so that f has the general form

f = o. Tr(BtB) +P, iTr(B2)i'

+ P,[Tr(BtB)]'+P, Tr[B'(Bt)'].

The weak coupling form (1) corresponds to the
special case P, = 2P„P,= 0.

In the weak-coupling case it can be shown' that
the free energy assumes its minimum for any B
of the form B =A(B, +iB,), where the B, are real
symmetric traceless matrices restricted only by
the orthonormality condition Tr(B;B,) = b;, , and
the parameter A. is determined by minimizing f,
for fixed B, The result is a highly degenerate
family of order parameters. If one adhered to
the weak-coupling model, the next step would be
to investigate the sixth-order term (proportional
to fdhlb, ,l') to determine the splitting of this de-
generacy. This is simply incorrect. The degen-
eracy is split in fourth order by the term in P,.
Even should P, be small, there is no reason for
it to vanish identically, and the splitting it pro-
duces will be more important than that given by
the sixth-order terms just below T, .

For I.= 1 the matrix 6 is of the form Q&„ug&,
x h„(iv, ), where A is a general complex matrix.

If we neglect the weak dipolar interactions, ' then
the underlying Hamiltonian is invariant under ro-
tations in spin space alone, or in A space alone.
For the free energy to have this invariance (to-
gether with gauge invariance) the second-order
term must be proportional to Tr(AA~), but there
are five linearly independent fourth-order terms
consistent with these requirements, giving a
fre e ener gy of the for m

f = o. Tr(AA~) + P, ITr(» )I'+ P,[Tr(AA~)]'

,P, T.[(AA)(»)*].P, T.[(» ) ]

+ P, Tr[(AA~)(AAt) *].
The weak-coupling form (1) corresponds to the
special case —p, = p, = p, = p, = —2p, .

When the parameters in (3) have the weak-cou-
pling form, one can prove that f, is minimized
by real A. (yielding b, proportional to a unitary
matrix). The weak-coupling free energy is sta-
tionary only when AA is proportional to a one-,
two-, or three-dimensional projection operator,
the two- and three-dimensional cases being re-
ferred to as Anderson-Morel or Balian-Werth-
amer gaps, respectively. The weak-coupling
free energy is always lowest for the three-dimen-
sional projection operator' and highest for the
one-dimensional one.

In the general case a, full analysis of (3) proves
more difficult. If one restricts oneself to trial
b, proportional to unitary matrices" then f is
stationary only for AA~ proportional to one-,
two-, or three-dimensional projections. Now,
however, the three-dimensional case is most
favorable only if

p, .4(p, .p,)»(p, Ip, p, i). (4)

Otherwise the one-dimensional case is most fa-
vorable. "

Should the inequality (4) be reversed, the na-
ture of the paired state is radically altered. The
energy gap Tr(4~4), for example, changes from
a constant to an anisotropic gap with nodes, yield-
ing a much broader anomaly in the zero-sound
attenuation. "

In the presence of a magnetic field H the in-
variants that are linear and quadratic in Il, to
leading order in A have the form"

i Qc „,~B„(AA~)„~, Q H„,(» ) „„H,.
Close to T, the term quadratic in' suppresses
the Balian-Werthamer type of solution, leading to
a diagonal matrix 6 (if the z axis is taken along
H). The quartic terms in f are proportional to
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(Jdk/4~-&))

~,(l&&P& I'+ l«P&l') +(~, + p.)(&l& tl'&'+ &I&)l')')

+(4p, +20.)l«t& i& I'+2(&. +&,)&I&~i'& &l~ ~l')

+2(p. + p,)(«i&&*)I'

In the weak-coupling case the first two terms be-
come proportional to &(b. ~~'+ ~A)('), and the last
three, which couple 4~ and A~, all vanish. Thus
the conclusion of Ambegaokar and Mermin' that
the spin-up and spin-down populations pair in-
dependently in a strong enough field is an arti-
fact of the weak-coupling model, and their de-
scription of the phase boundaries near T, in

strong fields must be modified as follows:
The highest transition remains one in which

only a single-spin population pairs, with a phase
boundary of the form T,(B) = T, +AH. If one as-
sumes that the second diagonal component of 4
appears via a second-order transition, then the
second phase boundary has the form T,(8) = T,
+K+, but, in contrast to the weak-coupling
case, K, g-K, .' The splitting of the phase
boundary remains linear in 8, but is no longer
symmetric about a line of constant 7.'. There is
some evidence that this is the case in He3."

It also follows from (5) that the deviation of the
zero-field susceptibility from its normal-state
form is proportional to (AA )„. If AA is a three-
dimensional projection, this cannot vanish, re-
sulting in a major disparity between the weak-
coupling model and the experimental observation
that the susceptibility appears unchanged in the
"A" phase, "suggesting that the coefficients in
(3) are such as to stabilize a solution with AA

one or two dimensional.
We were provoked into extending our investiga-

tion of the Ginzburg-I. andau theory of I go pair-
ing beyond its weak-coupling form by a talk on
the spin-fluctuation hypothesis at Cornell Uni-
versity by P. W. Anderson. We have since had
some useful correspondence with W. F. Brink-
man, who also called to our attention an error
in an earlier version of the manuscript. We have
had continual help and advice from V. Ambegao-
kar, and many valuable conversations with M. E.
Fisher, J. Serene, and P. Wolf le.

*Work supported in part by the National Science Foun-
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was received from the National Science Foundation

(Grant No. GH33637) through the Materials Science Cen-
ter, Cornell University, Report No. 1977.

'We use the term "weak coupling" in a somewhat dif-
ferent sense from its use in the theory of superconduct-
ing metals. To derive the coefficients in the free-ener-
gy expansion (or, equivalently, in the gap equation) one
must expand the anomalous part of the irreducible self-
energy to third order in &. A weak-coupling model
takes this expansion from Z = {OZ/6G) 06G, where the
subscript 0 indicates evaluation in the normal state,
and ~t" is the deviation of the propagator from its nor-
mal state form, taken to third order in & to determine
the fourth-order free energy. A full third-order expan-
sion, however, also includes third-order contributions
from the terms {1/n) (5"Z/oo")&(6G)", for n =2 and g.
These are the terms that give the additional structure
in the free energy when L & 0.

P. W. Anderson and W. F. Brinkman, Phys. Rev.
Lett. 30, 1108 (1973).
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Phys. Rev. Lett. 28, 885 (1972); D. D. Osheroff, W. J.
Gully, R. C, Richardson, and D. M. Lee, Phys. Rev.
Lett. 29, 920 (1972); R. A. Webb, T. J. Greytak, R. T.
Johnson, and J. C. Wheatley, Phys. Rev. Lett. 30, 210
(1973). The weak-coupling analysis in zero magnetic
field is given by R. Balian and N. R. Werthamer, Phys.
Rev. 131, 1553 (1963), and in a magnetic field near T~,
by V. Ambegaokar and N. D. Mermin, Phys. Rev. Lett.
30, 81 {1973).

We consider only a spatially uniform system in its
"classical" critical region.

5We assume the energy dependence of 4 is of negligi-
ble importance, so that we are not describing a strong-
coupling theory in the sense that the term is used in
metals physics.

Another fourth-order invariant, Tr[(B~B) 1, is
linearly dependent on the three given in Eq. (2), be-
cause of the relation ITr(B )I~+2[Tr(BtB)) =2
&& Tr f.jg~g) ] +4 Tr(B~ .8 ) that any symmetric trace-
less 3&&3 matrix must satisfy. With the aid of this
identity it is straightforward to show that the weak-
coupling free energy (1) has the form (2) with P3=0,
from which the features of the best weak-coupling 40
follow directly.

The solution was discovered by V. J. Emery (pri-
vate communication). We derived it by exploiting the
identity given in note 6, above, and it has been found
independently by G. Barton and M. A. Moore, to be pub-
lished.

They must ultimately be considered as a perturba-
tion that further reduces the degeneracy of the equilib-
rium state.

This was first proved by Balian and Werthamer,
Ref. 3.

A unitary gap matrix implies no spontaneous mag-
netization in the paired phase, but no spontaneous mag-
netization implies only that AA is real I.see Eq. (5)] .
Outside of the weak-coupling model, the unitary as-
sumption shouM be viewed with suspicion.

We are grateful to W. F. Brinkman for telling us of
an observation of P. W. Anderson on the best unitary
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gap in the one-dimensional case.
~D. T. Lawson, W. J. Gully, S. Goldstein, H. C.

Bichardson, and D. M. Lee, Phys. Bev. Lett. 30, 541
(1973). Analyses that favor the anisotropic gap have
been given by P. Wo'Ifle, Phys. Hev. Lett. , to be pub-
lished; B. Patton, to be published.

~These were derived by Ambegaokar and Mermin
(Ref. 3) from the weak-coupling model, but to leading
order in A the deficiencies of that model that we are
concerned with do not arise. Within the calculation of
Ref. 3, the existence of the term linear in H depends
on a violation of "particle-hole symmetry" and a second

quadratic term H Tr(AA ) is found to be negligibly
small.

For some values of the coefficients the second sec-
ond-order phase boundary is suppressed completely.

H. C. Richardson, private communication. Measure-
ments of the ratio of the slopes of the split phase bound-
ary and of the specific-heat discontinuities would be of
great value in reducing the range of possible coefficients
in the p-wave free energy.

This difficulty was first pointed out by A. J. Leggett,
and motivated the Anderson-Brinkman hypothesis that
spin fluctuations play an important role.
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Lovr-temperature specific-heat and electrical-resistivity measurements show that
the intermetallic compound Al&oV has a local sift mode of characteristic temperature
22'K. The behavior is well described by an Einstein model. The number of such modes,
taken together with x-ray evidence, indicates that the mode is associated with a loose
Al atom occupying a large hole in the Al~oV structure. This and other peculiarities of
the structure provide evidence of important bonding effects.

Truly localized vibrational modes are unusual
in solids because of strong interatomic coupling;
in this Letter we present experimental evidence
for the existence of sharply defined local modes
in the intermetallic compound AlxoV that are
well-described by an Einstein' model with a
characteristic temperature of 22'K. To the best
of our knowledge this is the lowest such charac-
teristic temperature to have been found in a met-
al.

Samples of AlyoV were prepared by arc melting
99.9+%-purity vanadium and 99.999+%%uo-purity

aluminum under an argon atmosphere; flat-bot-
tomed buttons of weight 1 g were made for spe-
cifi.c-heat measurements, and cast rods of 3 mm
diameter and 30 mm length for electrical-resis-
tivity measurements. After homogenization at
665'C for 80 h all samples were better than 95/o
single phase. Specific-hea'; measurements were
performed on two samples, numbers 1 and 2; the
vibrational specific heat of sample 2 had the
same functional temperature dependence as 1 but
was 15% smaller in magnitude. Samples number
3 and 4 were used for the electrical-resistivity

measurements.
The measured low-temperature specific heat

and electrical resistivity of our samples are
shown in Figs. 1 and 2; in order to provide a
yardstick we have included data for the compound
Al, Co„whose behavior is typical of all the other
aluminum- rich aluminum-transition- metal inter-
metallics that we have investigated. ' The extra-
ordinary behavior of Al„V is immediately appar-
ent, with the temperature dependences being 2

to 3 orders of magnitude greater than those for
Al, Co, . Such a rapid increase with temperature
indicates the presence of a low-lying vibrational
mode, and our specific-heat data a,re well-fitted
by the Einstein formula

c = CE+rT
exp(e E/T)

T 1exp(BE/T) —1]"
with an Einstein temperature OE of 22+ 2 K, and
a density of local (three-dimensional) oscillators
1V, equivalent to 0.11+0.03 per Al„V formula unit.
The Einstein formula is an extremely sensitive
function of 8, so that although we are uncertain


