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particle transfer reactions. For the '~'Pu final
nucleus, the ratio of the strengths for popula-
tion of the excited K"= 0' bands to those for the
ground-state bands is the same for the reaction

Pu(d, p) as for 'Pu(p, t). For the 2~Pu final
nucleus, the corresponding ratio for the reac-
tion 's'Pu(d, t) is only 4 of that for the reaction
'"Pu(p, t).

Since the relative population of the K'= 0'
states is as large for the (d, p) reaction as it is
for the (p, t), and since the relative population
in the (d, t) reaction is still a quarter of that in
the (p, t), it appears that the prediction of van
Rij and Kahana' is not upheld in these two cases.
However, it should be noted that we have not
taken two-step processes into account, and these
could be responsible for the strengths seen in
both reactions.
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The requirement of unitarity, together with the theory of the refractive index, puts a
limit on the wave number of a pion (of given energy) in nuclear matter (of given density).
A paradox in the conventional theory of pion scattering by complex nuclei is thereby
avoided.

The standard theory of the scattering of pions
by complex nuclei is based on the Kisslinger po-
tential. ' Several numerical calculations have
been carried out' ' with this potential, and agree-
ment with experiment has generally been satis-
factory. There is also an extensive literature on
modifications of this potential and other approach-
es.

The Kisslinger potential has, however, a very
puzzling feature, as follows. Using Ref. 2a, Eqs.
(20) to (22), and neglecting the Coulomb potential,
we find for the wave number of a pion in nuclear
matter of constant density' p

k' = k, '(1 + b,p)/(1 —b,p),

where k, is the free-space wave number, p the
density of nuclear matter, k, ' = v' —p. ', and b,

and b, are parameters describing the s and p
scattering of a pion by a nucleon. These are de-
termined by Auerbach et al. from the scattering
of n by free nucleons, with the result (at 80-MeV
lab energy)

b, =6.5+1.8i F'. (2)

Disregarding the imaginary part, k' becomes in-
finite at p = 0.16 F, i.e., just about the density
of normal nuclear matter, and becomes negative
for higher density. This is a quite unphysical be-
havior.

The paradox is solved by two considerations,
viz. (a) unitarity and (b) the Pauli principle. To
discuss this problem, we start from the general
theory of the refractive index which gives

k' —k, '=4vpf(k, 0),
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I l ' l,'I --8~p/u. (5)

Here k occurs because only the "wave in the me-
dium" is incident on the scatterer; the "free"
wave ko is extinguished upon entry into the medi-
um. Assuming p large and k, not very large, we
find

(5a)

so the infinite result of the Kisslinger theory can
never occur.

In accord with general practice, we set

f(k, 0) =2sinde' /k,

where 6 refers to the 33 state. The Chew-Low
theory' gives

tan6 4 f' 1
3 p, (d(1 —(d/(d„)

(7)

where ~„ is the resonance energy, 298 MeV in
the c.m. system, ' corresponding to &u„/p, = 2.14,
and 0„/p =1.89. Further, f'=0.088, &u is the en-
ergy, and k is again the wave number in the medi-
um. This comes in because the pseudovector cou-
pling is o..Vy=o»kcp, where y is the pion wave
function, and this is the origin of two powers of
k on the left-hand side of (7). Chew and i,ow
clearly separate, in their Eq. (33), the simple de-
pendence of the scattered amplitude on k from the
more intricate dependence on ~. The latter is
mainly caused by intermediate pion states of high
momentum, as is shown by their Eq. (49), and
these are likely to be about the same whether the
nucleon is free or in nuclear matter. Therefore
the form of the ~ dependence, their Eq. (51), is
taken over into our theory, including the value of
the resonance energy. The relation of the center
of mass to the lab energy of the ~, in view of the
Fermi motion of the nucleons, is discussed, e.g. ,
by Landau, Phatak, and Tabakin. '

For algebraic simplicity, we now make the fol-

where f(k, 0) is the forward scattering amplitude
of a particle of wave number k. This equation
was derived by Goldberger and Seitz' from the
Schrodinger equation, but it follows in fact di-
rectly from Huyghens principle regardless of the
wave equation. ' Now the maxim&m possible val-
ue of f, when only one partial wave l, j contri-
butes, is

If. il = (j+ 2)/&

(subscript unit for unitary). In our case, the rel-
evant state is p», (isospin will be considered lat-
er), so j+2 =2, and

lowing approximations:

single ' = tan5 if tan5 & 1,

single' =1 if tan6&1,
(8)

We write p„ in terms of the Fermi momentum:

p„=p, '/3n'. (10)

For normal nuclear matter, pF=1.34 F ' =1.89p.
In the simple case when tan5 &1, we have then
from (3), (6), and (8)

i '- i,' = (8~/3~)p „'/u.

If k, &pF, k will be of the order of p~, i.e., neith-
er of the order of k, nor extremely large.

Since 0 is of order p„ the Pauli principle will
have an effect. Figure 1 shows the mechanism
for the 33 scattering of a r by a neutron of ini-
tial momentum p: The final m of momentum k' is
emitted, and the neutron is thereby transformed
into a proton of momentum p —k'; then the initial

is absorbed and a neutron of momentum p —k'
+k results. In forward scattering, k'=k and the
final neutron state is the same as the initial. The
process, however, is forbidden if the intermedi-
ate proton state p —k is occupied. Assuming
equal density of protons and neutrons, the frac
tion of initial neutron states for which the inter-

N(p —4+k) P(p k )

FIG. 1. Feynman diagram for BB-resonance scatter-
ing,

tan5 being calculated from (7). The complex
phase e' will be calculated later, using inelastic
scattering. If the first Eq. (8) and (6) are insert-
ed into (3), we get the Kisslinger approximation.
But we then have to ascertain whether (7) gives
tan5&1, and this is generally not the case if k be-
comes very large, as it does in the Kisslinger
paradox.

For rr, (6) is the correct amplitude for scat-
tering by neutrons; for protons the amplitude is
-', of this, so that

~ =~~+ T~a=- ~~n

106



LETTERL REVIEWpHYSICAL g JANUARY30 +UMBER 3y()z.UM&

) ~f k&2PF») (] ——2k

k 1s empty"me»d ate statep—
2

(12)

p 4-2
F

if k&2PF.1

near p F&ll k and even fo
cient approximation

(12a)E =3k/4pF.

factor, saying thatmultip y
1rons is aof th

Inserting z =-', ,ter ~

8pFk —ko— (13)

and g

4f' k'
—(d/(d „)

k- PF3 (14)

ut 1 valid ifut this is onlyp
It is the simptan5 & l. i 'm

nceivable.co
If tan5&1, w

(3)

e resents tan5. there-

(14), respechve . 1
ourse direc

nd k, stra1g
~ is of cour

2

For any p
'

f v, fromdiffs k' for si
tl

F

h fth i 1 E
t1es,

ive the rg
e of course s'

r. The so 11'd curvestive to e
' uslysant Eq. (14).
the smallesh uldtakpFevery ~

th ol d

i.e., thei, left- mos
=0, weF

1n wh1ch 1ncurve B in in

e musti hA andBin
se curve

becomes v6 but curve A5 and 1.for m=1.
for

valid 1m

ch lower p F (
iA becomes

muc
about ~ 1.7,

e k) it in ersec
t ot' rve B

ld fo

pits maximum, e

0i
0.4 0.6 08 I.O l.6 l.8

k

a ion (abscissa) as a
) f 1

IG. 2. The wave num
omentum qs uared ofunction of p F

matter

are from the
rom

pion masss p. Th
curves(]4,

urves for a giv-
= ~,2 and l, g a

j.8). Inter se

ashed

1 tio

g
urve is app ica . F r

the text below

Fol" (d =
~ 2b dashes 1 g

'=3.06, kns that at p F

1n ordlnartential jump
'th po

ucleus is
as1 y

smoothedt' to accoun,
4 i.e., pron1 't '1

p togMeV), the ju
ty and is ernatter dens& ynuclear ma

essentially)
nt.

the m being es
portan .

cor res poCurve g
ile ree since
ns its

a 1

f ' ""'1gins" at ~=

107



VOLUME 30, NUMBER 3 PHYSICAL REVIEW LETTERS 15 JANUARY 1975

v, „,)(nm ) &2s/k'. (16)

Since k is, in most practical cases, of the order
of pF or larger, and using p„=1.34 F ' for nu-
clear matter, this means

o;„,(ns ) &30 mb,

~,-„.,(p. ) &10 mb.
(17)

Thus the cross section per nucleon is kept some-
what below its "geometrical cross section, "

wx, '

is shifted to lower and lower ~ as the density in-
creases. This is the equivalent of pressure
broadening in optics. At nuclear matter density,
the resonance region begins at ~ =1.15 t In the
literature, a downward shift of the resonance has
been reported; we believe the most important ef-
fect is broadening.

Once we are on curve A, the Pauli fa.ctor (13)
will soon become 1. We have used (12a.); we
must stop doing so when k =4P F/3; from then on
k is given by (11) and is slightly smaller (in this
region) than (13).

The imaginary pa. rt of f(0) is proportional to
the actual scattering cross section, i.e., to the
probability of scattering with a change of direc-
tion, k-k'. In nuclear matter, because of con-
servation of momentum, this means that a nucle-
on must change its state, i.e., we have inelastic"
scattering. The probability for this is decreased
by the Pauli factor (12) in which k is repla. ced by
the momentum change

q= )k' —k) =2k sin(e/2)

so that small-angle inelastic scattering is sup-
pressed. The energy of the scattering nucleon
must, of course, increase move than for a free
nucleon, because in nuclear matter the potential
energy of a nucleon increases with increasing
momentum: This further decreases the probabil-
ity of inelastic pion scattering, but probably this
decrease is significant only for low pion energy.

In any case, Imf(0) must be ca.lculated from the
inelastic scattering, and will generally be much
smaller than i sin'(5/k) [cf. (6)] if 5 is calculated
from the Chew-Low formula (7).

An interesting feature of the unita. rity require-
ment is that the inelastic scattering is, in any
case, limited (for the 33 state) by

in the nucleus, even at resonance.
The main theoretical work now has to begin, in

particular comparison with data. Qur theory is
merely qualitative, but its qualitative features
differ from any existing theory we know. Qur
main results are the following: (1) The wave
number k of a pion in a nucleus never becomes
unduly large, regardless of the nuclear density.
(2) The resonance is very much broadened by
density. (3) Inelastic scattering is appreciably
suppressed.
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