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particle transfer reactions. For the 2¢°Pu final
nucleus, the ratio of the strengths for popula-
tion of the excited K" =0" bands to those for the
ground-state bands is the same for the reaction
2¥pu(,p) as for 2*2Pu(p,t). For the 2%8Pu final
nucleus, the corresponding ratio for the reac-
tion 2®Pu(d, ¢) is only % of that for the reaction
240pu(p, t).

Since the relative population of the K™ =0*
states is as large for the (d,p) reaction as it is
for the (p,?), and since the relative population
in the (d, ¢) reaction is still a quarter of that in
the (p,t), it appears that the prediction of van
Rij and Kahana' is not upheld in these two cases.
However, it should be noted that we have not
taken two-step processes into account, and these
could be responsible for the strengths seen in
both reactions.
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The requirement of unitarity, together with the theory of the refractive index, puts a
limit on the wave number of a pion (of given energy) in nuclear matter (of given density).
A paradox in the conventional theory of pion scattering by complex nuclei is thereby

avoided.

The standard theory of the scattering of pions
by complex nuclei is based on the Kisslinger po-
tential.! Several numerical calculations have
been carried out? * with this potential, and agree-
ment with experiment has generally been satis-
factory. There is also an extensive literature on
modifications of this potential and other approach-
es.

The Kisslinger potential has, however, a very
puzzling feature, as follows. Using Ref. 2a, Egs.
(20) to (22), and neglecting the Coulomb potential,
we find for the wave number of a pion in nuclear
matter of constant density® p

k2 =k2(1+byp)/(1-b,p), (1)

where k&, is the free-space wave number, p the
density of nuclear matter, k,*=w?®- pu? and b,

and b, are parameters describing the s and p
scattering of a pion by a nucleon. These are de-
termined by Auerbach et al. from the scattering
of m by free nucleons, with the result (at 80-MeV
lab energy)

b,=6.5+1.8i F®, (2)

Disregarding the imaginary part, k2% becomes in-
finite at p=0.16 F73, i.e., just about the density
of normal nuclear matter, and becomes negative
for higher density. This is a quite unphysical be-
havior.

The paradox is solved by two considerations,
viz. (a) unitarity and (b) the Pauli principle. To
discuss this problem, we start from the general
theory of the refractive index which gives

k? - k()2 :4Tfpf(k, 0); (3)
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where f(k, 0) is the forward scattering amplitude
of a particle of wave number k. This equation
was derived by Goldberger and Seitz® from the
Schrédinger equation, but it follows in fact di-
rectly from Huyghens principle regardless of the
wave equation.” Now the maximum possible val-
ue of f, when only one partial wave [/, j contri-
butes, is

funel = (G +2) /R (4)

(subscript unit for unitary). In our case, the rel-
evant state is p,,, (isospin will be considered lat-
er), soj+3=2, and

|k? — k2| < 8mp/k. (5)

Here k occurs because only the “wave in the me-
dium” is incident on the scatterer; the “free”
wave k, is extinguished upon entry into the medi-
um. Assuming p large and %k, not very large, we
find

| k3| <8mp, (5a)

so the infinite result of the Kisslinger theory can
never occur.
In accord with general practice, we set

f(k, 0) =2 sinde/k, (6)

where 6 refers to the 33 state. The Chew-Low
theory® gives

tand 4 f? 1

3 el-w/w)’ (M

where w, is the resonance energy, 298 MeV in
the c.m. system,® corresponding to w,/u =2.14,
and k,/1=1.89. Further, f2=0.088, w is the en-
ergy, and %k is again the wave number én the medi-
um. This comes in because the pseudovector cou-
pling is 0+ Vo ~G+k¢, where ¢ is the pion wave
function, and this is the origin of two powers of
k on the left-hand side of (7). Chew and Low
clearly separate, in their Eq. (33), the simple de-
pendence of the scattered amplitude on £ from the
more intricate dependence on w. The latter is
mainly caused by intermediate pion states of high
momentum, as is shown by their Eq. (49), and
these are likely to be about the same whether the
nucleon is free or in nuclear matter. Therefore
the form of the w dependence, their Eq. (51), is
taken over into our theory, including the value of
the resonance energy. The relation of the center
of mass to the lab energy of the 7, in view of the
Fermi motion of the nucleons, is discussed, e.g.,
by Landau, Phatak, and Tabakin.'°

For algebraic simplicity, we now make the fol-
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lowing approximations:

sinde*S=tand if tand<1,
o i6_q (8)
sinde’®=1 if tan6>1,
tand being calculated from (7). The complex
phase e*® will be calculated later, using inelastic
scattering. If the first Eq. (8) and (6) are insert-
ed into (3), we get the Kisslinger approximation.
But we then have to ascertain whether (7) gives
tan6 <1, and this is generally not the case if & be-
comes very large, as it does in the Kisslinger
paradox.
For m~, (6) is the correct amplitude for scat-
tering by neutrons; for protons the amplitude is

1 of this, so that

P=p,+30,=kp,. 9)
We write p,, in terms of the Fermi momentum:

p,=pg®/3m2. (10)

For normal nuclear matter, py=1.34 F™1=1.89u.
In the simple case when tandé >1, we have then
from (3), (6), and (8)

k2= ky?=(8k/3m)p % /k. (11)

If 2y <pg, & will be of the order of py, i.e., neith-
er of the order of £, nor extremely large.

Since k is of order py, the Pauli principle will
have an effect. Figure 1 shows the mechanism
for the 33 scattering of a 7~ by a neutron of ini-
tial momentum p: The final 7~ of momentum k' is
emitted, and the neutron is thereby transformed
into a proton of momentum P — E’; then the initial
7~ is absorbed and a neutron of momentum P - k’
+k results. In forward scattering, k’ =k and the
final neutron state is the same as the initial. The
process, however, is forbidden if the intermedi-
ate proton state Pk is occupied. Assuming
equal density of protons and neutrons, the frac-
tion of initial neutron states for which the inter-
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FIG. 1. Feynman diagram for 33-resonance scatter-
ing.
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mediate state p — 2 is empty is

F=3(k/pp)(1 - £k%/pr?) if k<2py,

(12)
F=1 ifb>2p,.

For small 2, and even for %2 near py, it is a suffi-
cient approximation to set

F=3k/4p5. (12a)

We simply multiply p by this factor, saying that
only the fraction F of the neutrons is able to scat-

ter 77, Inserting k=%, Eq. (11) becomes then

8p 5>
kz_koz: F

o (13)

As previously pointed out, this is only valid if
tand>1. It is the simplest dispersion relation
conceivable.

If tand <1, we use Egs. (6)-(10) and (12a) in
(3) and get

k2~k02=—§m2§——

(14)
The ratio of (14) to (13) represents tand; there-
fore, in accord with (8), the correct 2 (for given
ky and p) is the smaller of the two values de-
duced from (13) and (14), respectively. In (14),
w is of course directly related to &,.

For any pair of values 2, and %, straightfor-
ward algebra gives pp2. In Fig. 2 we have plotted
pr® versus k%, for six different values of w, from
1.123 to 1.6, mostly in steps of 0.1. All quanti-
ties, w, k, and pp, are in units of 1. The dashed
curves A give the result of the simple Eq. (13);
they are of course simple parabolas, vertically
shifted relative to each other. The solid curves
B represent Eq. (14). As previously stated, for
every w and pr we should take the smallest &,
i.e., the left-most curve. Taking, e.g., w=1.4,
and starting from py =0, we start on the solid
curve B in which % increases at first very slowly,
then much faster. Atp;®=1.89 and 2=1.60, curves
A and B intersect, and for higher py we must
then choose curve A. Similar behavior is shown
for w=1.5 and 1.6 but curve A becomes valid at
much lower p for these (circles in Fig. 2). At
about w 21.75, curve A becomes valid immediate-
ly at py =0.

For w<1.4, there is a somewhat peculiar be-
havior: Curve B reaches its maximum before
(i.e., at a lower k) it intersects curve A. The de-
scending part of curve B has, in our opinion, no
physical meaning. We should follow curve B to
its maximum, then jump at constant p to curve

o

1.8
k

FIG. 2. The wave number & of a pion (abscissa) as a
function of pr? (Fermi momentum squared) of nuclear
matter (ordinate), for various pion energies w (num-
bers attached to curves). All quantities in units of the
pion mass . The solid curves are from the Chew-
Low theory (14), the dashed curves from the unitarity
relation (13). Intersections of the two curves for a giv-
en w are indicated by circles. For w=1,2 and 1.3, a
triangle shows the lowest pr and k for which the dashed
curve is applicable. For the use of these curves, see
the text below (14),

A (indicated by dashes in Fig. 2). For w=1.2,
this means that at p2=3.06, % jumps from 1.15
to 1.74. While this behavior is odd, it is no worse
than a potential jump in ordinary Schrédinger the-
ory, which is easily tractable. When the gradual
change of density at the surface of a nucleus is
taken into account, our jump may be smoothed
out. It occurs only at w<1.4, i.e., pion kinetic
energies <56 MeV which are difficult to handle
experimentally. For w<1.15 (kinetic energy 21
MeV), the jump occurs at a density higher than
nuclear matter density and is therefore not im-
portant.

Curve A corresponds to the 7 being (essentially)
at resonance, since 6>45°. While resonance “be-
gins” at w ~1.75 for free nucleons, its beginning
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is shifted to lower and lower w as the density in-
creases. This is the equivalent of pressure
broadening in optics. At nuclear matter density,
the resonance region begins at w=1.15] In the
literature, a downward shift of the resonance has
been reported; we believe the most important ef-
fect is broadening.

Once we are on curve A, the Pauli factor (13)
will soon become 1. We have used (12a); we
must stop doing so when k2 =4p;/3; from then on
k is given by (11) and is slightly smaller (in this
region) than (13).

The imaginary part of f(0) is proportional to
the actual scattering cross section, i.e., to the
probability of scattering with a change of direc-
tion, k—~Kk’. In nuclear matter, because of con-
servation of momentum, this means that a nucle-
on must change its state, i.e., we have inelastic'!
scattering. The probability for this is decreased
by the Pauli factor (12) in which % is replaced by
the momentum change

g=Ik’-k|=2ksin(6/2) (15)

so that small-angle inelastic scattering is sup-
pressed. The energy of the scattering nucleon
must, of course, increase move than for a free
nucleon, because in nuclear matter the potential
energy of a nucleon increases with increasing
momentum: This further decreases the probabil-
ity of inelastic pion scattering, but probably this
decrease is significant only for low pion energy.

In any case, Imf(0) must be calculated from the
inelastic scattering, and will generally be much
smaller than 7 sin2(6/%) [cf. (6)] if 6 is calculated
from the Chew-Low formula (7).

An interesting feature of the unitarity require-
ment is that the inelastic scattering is, in any
case, limited (for the 33 state) by

Oinerlnm 7) <2m /k2. (16)

Since k is, in most practical cases, of the order
of pr or larger, and using py=1.34 F™! for nu-
clear matter, this means
Uinel(nﬂ -) <30 mb’
- (17)
Oiner(p77) <10 mb.

Thus the cross section per nucleon is kept some-
what below its “geometrical cross section,” 77,2
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in the nucleus, even at resonance.

The main theoretical work now has to begin, in
particular comparison with data. Our theory is
merely qualitative, but its qualitative features
differ from any existing theory we know. Our
main results are the following: (1) The wave
number % of a pion in a nucleus never becomes
unduly large, regardless of the nuclear density.
(2) The resonance is very much broadened by
density. (3) Inelastic scattering is appreciably
suppressed.

My thanks are due to the Los Alamos Meson
Physics Division for drawing my attention to this
problem, to A. Kerman and L. Kisslinger, to
C. Dover, and to J. Negele for valuable discus-
sions.
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