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FIG. 4. Bottom curves, ratio of the test wave’s am-
plitude to the main wave’s amplitude. Top curves, ra-
tio of the test wave’s amplitude to the satellite wave’s
amplitude. Theoretical curves (solid) obtained using
Eq. (5); data (dots and dashed curves) obtained from
Fig. 3.

the waves at adjacent unstable frequencies no
longer grow according to linear theory. We
have observed small test waves at neighboring

unstable frequencies and predict their behavior
by regarding them as a slow modulation of the
main wave’s amplitude and phase.
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Model of Parametric Excitation by an Imperfect Pump*
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(Received 19 March 1973)

We examine the three-wave decay instability due to a monochromatic pump with a
phase which undergoes a random walk with diffusion coefficient D, Analytic results are
obtained for small and large D/y, (where v, is the growth rate for D =0), which demon-
strate, respectively, a fractional reduction of ¥ by D /vy, and a growth rate yoz/D. Re-
sults are also presented for intermediate values of D /v,.

It is now clear that parametric instabilities
play a crucial role in the interaction of intense
radiation with plasma.’ Some of the effects are
desirable, such as the anomalous absorption and
concomitant heating in confined plasmas. How-
ever, in the laser-pellet interaction, this heating,
if untimely, may prove troublesome for fusion

prospects.? In addition the presence of the Ram-
an and Brillouin backscattering instabilities® in
the highly underdense region may, theoretically
at least, isolate the core of the pellet from the
radiation.

Because of the resonant nature of some of
these instabilities, any mechanism which causes
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the pump to become nonmonochromatic is expect-
ed to reduce or even throttle the growth of these
instabilities. One approach which might be used
for the control of these instabilities is by making
laser-produced radiation noisy. We consider
here a model problem which treats one aspect of
the noisy nature of this radiation. In this model
we consider the electromagnetic pump of the
form E,cos(w,t ~ ¢) and treat its stochastic prop-
erties as arising from a series of small random
deflections in its phase ¢, but regard the ampli-
tude and frequency fixed. That is, we take

() =220¢,0(t = 1,). (1)

To our knowledge, the only other work along
these lines has been that of Bodner,* who consid-
ered a frequency-modulated pump, and that of
Thomson® who treated a pump whose amplitude
autocorrelation is Gaussian.

In this work we discuss the three-wave decay
instability of the pump into two normal modes of
the plasma, (We treat here, for concreteness,
the decay of the electromagnetic pump into an
electron-plasma oscillation and an ion-acoustic
wave, but with trivial modification the general
three-wave problem can be subject to the same
analysis.) We begin by writing down the pair of
coupled oscillator equations® for », and »,, the
density fluctuations in k space associated with
ion-acoustic wave and electron-plasma oscilla-
tion, respectively:

d? d .
R rT w,*Jn, = = iCn, coslwyt — @(t)],

(2)

2

(;tz + 21/2 FTid w2>n2 iCn, cos[wyt — @(t)].

Here v, and v, are linear damping decrements,
and the coupling coefficient C=k- E(e?/mm,)"".

To order 12/w” these equations may be factor-
ized into

(d/dt+iw, +v,)(d/dt —iw, +v,)n,
= = {Cn, cos(wyt — @),
(@/dt+iw,+v,)(d/dt — iw,+ v,)n, ®)
=4iCn, cos(wyf ~ @).

When we consider the interaction of just two of
the modes near ~ w, and + w,, this set reduces to

the coupled first-order equations
(d/dt+iw, +v)n, = (C/2w)n, cos(wt — @),

(d/dt = iw, + vy)n, = (C/2w,)n, cos(wyt ~ ). )
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Here we take w,, w,>0, for a given k. The addi-
tional following transformation,

12 exp{li(w, — w,) = (v, + v,) 5},
(v + Vz) Et}s

symmetrizes the equations into the following
forms

la/at+56v+3i(w
[a/at - 56v -

n, =7 (w
(5)

n,= ﬁz(wz) 12 exp{[i(w, — w,) -

o= M), = Fiiycos(wyt = ¢),

- ~ 6
3i(w, — A)Jfi, = Fii, cos(wyt — ¢). (6)
Here 6v=v, —v,, A=w,~w, —w, and F=C/2(w,
X w,)"2. The equations for the sum and difference
of i, and %, satisfy

dS/dt+ iD= FS cos(wyt - ¢), )
dD/dt +iQS = — FD cos(wyt — ¢),

where now Q= (w, - & —i6v)/2. If we now elimin-
ate D and discard nonresonant terms and terms
of O(F), we obtain

d?S/di? + [P+ Fuw,sin(w,t - ¢)]$=0. (8)

In general Q is complex. We temporarily re-
strict our analysis to the case where the imagin-
ary part of € is unimportant, i,e., to the case
where the growth rates are greater than the dif-
ference of the linear damping decrements. In
this case we have the standard form of the Ma-
thieu equation with a small pump of frequency
close to twice that of the driven oscillator, If we
define dimensionless long-time scale variables

t'=F, A’=A/F, (9)

and assume a solution of the form
S=R(#)sin[zw,t —x ()], (10)

we obtain the following set of coupled equations
on the long-time scale:

R/R=
where 8= ¢ —2x + 7. In the absence of any fluctua-
tion in the phase, the solutlon relaxes to =4,
=arcsin(-A), R/R=y,=4(1-4%"2 as ¢ approach-
es infinity, The effect of the phase fluctuations
is to prevent this relaxation from becoming com-
plete, i.e., ¢ is aforcing term which scatters g
away from its asymptotic value. It is a competi-
tion between this scattering resulting from the
stochastic nature of ¢ and the relaxation of g to
B, which determines the ensemble average growth
rate

o E%f”dﬁ W(p) cosp. (12)

32 cosp, A+sing=¢ - A4, (11)
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Here W(pB) is the probability density for the distribution of g which is to be found. The nonlinear sto-
chastic equation for the random variable B is then

B+ sin(g+ Bo) - sing, = ¢,

where we now measure g from its steady value g, in the absence of noise, sing,=-A. If we now for-
mally integrate for a time Af long enough so that ¢ has made many small jumps but short enough that
B has not changed appreciably, then

(13)

A+ [sin(B+B,) —sing,Jat= Ap+ O(AL?). (14)

Therefore the transition probability of the left-hand side is the same as that for A¢, which is known
from the theory of random flights,”

P(AB; B, AL) = (4mDAL) "~ exp(-{ap+ Atlsin(B+ B,) — sin,J1*/4DAT), (15)

where D=n(5¢%/2, n is the number of displacements in phase per unit time, and (6¢?® is the mean
square displacement in phase expected on any given occasion. It is readily shown that this transition
probability implies the power spectrum of the incident radiation to be S(w)= E,>D/2[D*+ (w — w,)?].

With the knowledge of the transition probability ¢ we can obtain the Fokker-Planck equation’ for the
distribution W of B,

dW(B, t; By, D)/0L= -0 (ARYW) /8 5+ 30°((ABHW) /3% (16)
Here

(apy= (A" [ABY(AB, p)dAR=~[sin(g+ B,) - sing,], (17a)

(AR = (A1) [AB*Y(AB, B)dAB=2D. (17b)

It is the stationary, periodic solution of this equation we are concerned with, that is, the solution of

Do*Ww/o g+ (8 /o p)[sin(B+ B,) — sing,|W}=0, (18)
with W(g+27)=W(g). This equation is readily solved to yield
W =C expla cos(p+ Bo)]fomexp(— tasing,) exp[—a cos(t+ B+ B,)]dt, (19)

with the constant C to be determined from the normalization /[Wdg=1, and a=1/D. We restrict 8, to
the values 0 <g, <7/2.
We are now prepared to write an expression for the modified growth rate:

()=%[Wcos(B+B,)dp/ [ Wag, (20)
or

)= 1 [Jexp(- 2at sing,)I,(2a sint) sint dt

2 f(’)’ exp(- 2at sinB,)I,(2a sint) dt ’

(21)

where the I’s are Bessel functions of the second
kind. The asymptotic values are readily obtained
for large and small D. For D>1,

' finite D.
We have thus found the average growth for the
three-wave decay process in a plasma when the

~ -1
Gy =(4D)", (22) pump is subject to random alterations of phase.
while for D «1, Such a nonideal effect can cause significant re-
(y) =% cos(B,)(1 — D/2 cos’B,). (23) duction of the growth rate when the phase diffu-

sion time is comparable to or shorter than the
growth time., We realize that to make noisy
lasers goes counter to their more usual attrac-

These asymptotic results are plotted together
with the exact value of (y) versus D for §,=0 in

Fig. 1. The growth rate decreases monotonically
with increasing D. Note that the asymptotic re-
sults are a good approximation to ¢y) even for

tive feature, i.e., their coherence, but it may be
necessary to trade off this feature in order to
throttle the undesirable instabilities.

1037



VoLuME 30, NUMBER 21

PHYSICAL REVIEW LETTERS

21 May 1973

0.5 T T T T T
N
\3
\
0.4+ NS -
N
\
)
0.3F « —
\
<y> \
\
N
02F \\ _
\\\
\\\

= == —
0 ! | ! | L

0 0.5 1.0 15 20 2.5 3.0

D

FIG. 1. Ensemble average growth rate {y) versus
the phase diffusion coefficient D, Solid line, exact re-
sult, calculated from Eq. (21); dashed lines, asymptot-
ic results for large and small D, as given in Egs. (22)
and (23).

We remark here that the derivation of Eq. (8)
is unchanged if we regard F and w, as slowly

varying but otherwise arbitrary functions of time.
Thus the analysis of the effects of amplitude and
frequency uncertainty (e.g., as occurs for a
multimode pump) can be picked up at this point,
This will be discussed in a future paper.
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Tricritical Points of Thin Superconducting Films*

A. M. Goldman
School of Physics and Astronomy, Univervsity of Minnesota, Minneapolis, Minnesota 55455
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A similarity between the phase diagrams of systems which are believed to exhibit tri-
critical points and the phase diagram of the transition to the superconducting state of a
thin film in a uniform magnetic field suggests the existence of a tricritical point in the
latter system. The superconducting case is of interest because the field thermodynami-
cally conjugate to the order parameter can be realized physically. The conjugate field
plays an important role in models of the tricritical point but has been believed to be un-

physical in systems studied thus far.

The purpose of this Letter is to point out a
similarity between the phase diagram of a thin
superconducting film in a magnetic field and the
phase diagrams of systems exhibiting tricriti-
cal points.”® This similarity suggests the exis-
tence of a tricritical point in the superconduct-
ing case. This would be significant because in
superconductors it is possible by means of elec-
tron tunneling to realize the field thermodynami-
cally conjugate to the order parameter associat-
ed with the critical line of the phase diagram.®®
This field is important in current models of the

1038

tricritical point’ in other systems, but is unphys-
ical. In addition, the classical second-order na-
ture of the phase transition® '° in superconductors
should permit realistic calculations of properties
in the vicinity of the tricritical point.

The essential experimental feature of a system
possessing a tricritical point is that there is a
point at which a higher order of A transition line
in the space of thermodynamic fields (tempera-
ture, pressure, etc.) becomes a first-order tran-
sition line.! In Fig. 1(a) we show the phase dia-
gram for a metamagnet, The figure caption con-



