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An unstable launched wave on a low-density, cold-electron-beam-plasma system
grows and traps the beam electrons. Test waves at neighboring unstable frequencies
are observed to stop growing where the beam is trapped and to exhibit amplitude oscilla-
tions that are coherent with the amplitude oscillations of the main wave. The behavior
of the test wave is calculated by regarding it as a slow modulation of the main wave's
amplitude and phase.

It is well known that when a low-density, cold
electron beam is injected into a collisionless
plasma, the nonlinea, r limit of wave growth oc-
curs because the beam electrons become trapped
in the potential troughs of the wave. The local
single-wave theory' ' assumes that when trap-
ping occurs the wave is monochromatic because
the most unstable wave has outgrown the unsta-
ble waves at neighboring frequencies. Experi-
ments have shown good agreement with the sin-
gle-wave theory for the initial nonlinear develop-
ment of a low-density, cold-beam-plasma, sys-
tem. ~' Actually, when the beam is trapped the
bandwidth of the statistical beam-grown noise
is small, but finite. To investigate the waves
within this finite bandwidth, we launch test waves
separated slightly in frequency from the main
wave (i.e. , the fastest-growing wave). '

We calculate a test wave's behavior in the non-
linear region by regarding the test wave as a
slow modulation of the main wave'q initia, l am-
plitude and phase. We find agreement with the
experimental results.

If we were to calculate the evolution of the test
wave by treating it as a separate Fourier com-
ponent, ' the calculation would be difficult since
the test wave propagates in the presense of the
main wave's trapped particle distribution, which
is very spatially dependent on both the wave-
length and the bounce-length scale. Instead, we
regard the test wave as a slow modulation of the

main wave's initial amplitude and phase and de-
termine the wave evolution from the single-wave
model. Because the electron transit time is
short compared to the modulation period, a sin-
gle electron sees an essentially monochromatic
wave (while the spectrum analyzer resolves the
frequency separation between the main and test
waves).

At the position of the transmitter, the modu-
lated single wave may be expressed as

4(t, x = 0) = y, exp[i~at]+ ecpo exp[i(&u, + &v)t]

=C(t) exp(i[+, t+ g(t)]),

where, to order E,

C(t) = p, exp[e cos(A~ t)],

6 (t) = E sin(6(d t ).

We have assumed that the test wave's amplitude
is small compared to the main wave"s amplitude
(e «1). Since we are using the single-wave the-
ory, the modulation must be slow (A~ L/u «1,
where L is the system length and u is the beam
velocity). The solution for the spatial growth of
an unmodujI'ated single wave may be expressed
in terms of scaled variables as

4~(t, f) =exp(i&u, t)C~(f),

with

C (g) =q exp( —i f'[i& (P')+&„(P')]dq'), (2)

where the scaled universal variables are'

g =k, (q'/2)' 'x, x = ~„+i K, = (k —k, )/k, (q'/2)' ', q' = 3 (n, /n, )(u/tr)'

n~/n, is the ratio of beam density to plasma density, and tr is the thermal velocity of the plasma elec-
trons. &u, and ko are defined by the two conditions ~o =k, u and Re[a(~„k,)] = 0, where e(cu, k) = 0 is the
dispersion relation for the plasma without the beam. In Ref. 2, the universal solution for C~(g) was
computed numerically with f and & represented by 7 and , respectively.

The evolution of a single-frequency wave with an arbitrary initial phase 0(t) and amplitude C(t) is
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given by'

Cn (), ))=4 (n, )+9())+ "„)n, )+ )n
C(t) 1 C(t)

KI @p Kl Pp

where ~, = ~~3 is the sealed linear growth rate, and ~„=—2 is the scaled linear wave number of the
wave. Equation (8) simply states that changes in the initial phase and amplitude of the single-wave
solution correspond to shifts in the time and space axes.

Receiving this modulated wave through a narrow-band filter corresponds to performing the Fourier
transform

4„i(&u, &) = (2m) 'f" dt exp(-t(ut)4)))i(t, P).

Equations (1)—(4) lead to the frequency spectrum as a function of distance from the transmitter:

4~i((u, &) = 4i(&)l h((u —(u, )+ aeA, (&) |)(u) —(u, —t) u))+ 2eA (p) 5((u —(u, +b(u)+o(e')], (5)

where

The functions vz(f), v„(P), and 4i(r) are ob-
tained from Ref. 2.

The test wave is the Fourier component at ~
= ~p+ 4m. The predicted amplitude is linearly
proportional to the initial amplitude cp„which,
as we shall see below, agrees with our experi-
ment. Equation (5) predicts a satellite at v =&so
—4~ and linear in Ey„which we describe below
and which has been observed previously. ' When

perf orm ed to order E', the theory predicts addi-
tional satellites at ~ + 2 4~, which have been ob-
served and interpreted using a different model. "

The top curve in Fig. 1 shows the predicted
potential of the main wave, computed in Ref. 2,
and plotted as a function of the scaled distance
along the beam. The lower curves are the pre-
dicted potentials of the launched test wave 4 (~,
+6~, g) and the satellite 4(~, —4&v, f), computed
using Eq. (5) above. The amplitude of the satel-
lite is zero in the linear region, where the
launched waves do not interact. The calcula-
tion predicts that the test wave will stop grow-
ing where the main wave traps the beam.

The apparatus, which has been described else-
where, "produces a 2-m-long, 2-cm-radius
plasma column. The effective electron density
is 5x1.0' cm ' and the electron temperature is
approximately 5 eV. The axial magnetic field
is 180 6, so that the plasma frequency (200 MHz)
is 0.4 times the cyclotron frequency. The 3-mm
radius, 150-V, 200-pA electron beam is pro-
duced by an indirectly heated tungsten cathode
followed by two Pierce-geometry electron lenses.
The ratio of the electron beam density to the
plasma effective electron density is 0.01.

Small-amplitude, low-frequency fluctuations
in the plasma density and potential cause the
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FIG. 1. Top curve, predicted potential of the main
wave that traps the beam, computed in Ref. 2 and plot-
ted as a function of the scaled distance along the beam.
Lower curves, predicted potentials of the launched test
wave @'(p++4', P) and the satellite 4(~0-A~, &) comput-
ed using Eq. (5).

I frequency of the most unstable wave to fluctuate
slightly. In order to fix the frequency of the
wave that traps the electron beam, a main wave
is launched in the plasma 10-20 dB above ther-
mal noise, using a wire probe. Test waves are
launched in the same way at neighboring unstable
frequencies and are detected coherently.

It has been known for a number of years that a
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launched wave on a beam-plasma system sup-
presses neighboring thermal noise below its
natural level. '2 We have observed suppression
that is as much as 20 dB over a 10-MHz-wide
region of the noise spectrum and is centered on
the launched wave frequency. (Our experiments
show that a small launched test wave behaves in
the same way as unlaunched noise at the test
wave frequency. ) In the context of the single-
mave theory, the launched wave has grown,
trapped the beam, and consequently modified
the dispersion relation of the unstable waves
at neighboring frequencies. Figure 2 shoms the
received pomer of a test mave as a function of
distance along the beam. Curve a shows the test
wave launched alone. It grows exponentially
(logarithmic scale) until it traps the beam. Then
it oscillates as the beam electrons bounce back
and forth in the wave troughs as predicted by the
single-wave theory. Curves b and c show the
same test wave when a larger wave (not shown)
is launched so it traps the beam first. The test-
wave growth is unchanged in the linear region
until the point where the main wave begins to
trap the beam. The test wave's subsequent os-
cillatory behavior is modified. When the main
wave's launched amplitude is increased so that
the beam is trapped earlier, the test mave's
depaxture from linear behavior is correspond-
ingly earlier (curve c). When the test wave's
launched amplitude is varied ovex 10 dB, its
amplitude at all positions is linearly proportion-
Rl to its lRunched amplitude. Fox' increases
greater than 10 dB, the test wave no longer be-
haves linearly, probably because the test wave
begins to modify the beam dynamics.

FIG. 2. Received power of a launched wave at 131
MHz as a function of distance from the transmitter.
Curve a, only the 131-1VlHz wave is launched. Curve 5,
a larger wave at 127 MHz is also launched. Curve ,
the amplitude of the 127-MHz wave has been increased.
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Our principal result is the agreement between
the experimental data shown in Fig. 3 and the
calculation plotted in Fig. 1. The horizontal
scale in Fig. 3 is expanded compared to Fig. 1
and extends between &=2 Rnd &=11. In Fig. 3,
b f=3 MHz (f, =126 MHz). The results are sim-
ilar for bf = 6 MHz but differ for Af = 9 MHz,
probably because the assumption b,e J /u «I is
no longer valid.

A sensitive test of the present theory is ob-
tained by predicting and observing the xatio of
the amplitude of the test mave to that, of the main
wave, thus normalizing away departures of the
main wave from the prediction of the single-
wave theory. Figux'e 4 is such a comparison be-
tween Eq. (5) and the data from Fig. 3 for the
test wave (lower curves) and satellite (upper
curves). The transformation from actual dis-
tance along the beam to scaled units f was done
by locating the position of the first peak (f = 6.5)
and measuring the linear growth rate. The test-
wave theory and experimental curves mere set
equal at the beginning of the nonlinear region
(& =4.0), corresponding to a measurement of e
for use with Eq. (5). The additional breadth of
the experimental curves (corresponding to a
smearing out of the oscillations in the pomer
curves) may be due to low-frequency fluctuations
in the background plasma. The present theory
does not include the experiment's time average
over an "ensemble" of slightly different plasmas.

In summary, when an unstable launched wave
on a low-density, cold-electron-beam-plasma
system grows and traps the beam electrons,

FEG. 3. Received power at each of three frequencies,
shown as a function of distance from the transmitter.
A large wave is launched with f0=126 MHz and a small
test wave is simultaneously launched with f=io+~i
=123 MHz. No wave is launched at the satellite fre-
quency fq- &f= &29 MHz.
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the waves at adjacent unstable frequencies no
longer grow according to linear theory. We
have observed small test waves at neighboring

FIG. 4. Bottom curves, ratio of the test wave's am-
plitude to the main wave's amplitude. Top curves, ra-
tio of the test wave's amplitude to the satellite wave's
amplitude. Theoretical curves (solid) obtained using
Eq. (5); data (dots and dashed curves) obtained from
Fig. 3.

unstable frequencies and predict their behavior
by regarding them as a slow modulation of the
main wave's amplitude and phase.
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We examine the three-wave decay instability due to a monochromatic pump with a
phase which undergoes a random walk with diffusion coefficient D. Analytic results are
obtained for small and large D/yo (where yo is the growth rate for D = 0), which demon-
strate, respectively, a fractional reduction of y by D/yo and a growth rate po /D. Re-
sults are also presented for intermediate values of D/yo.

It is now clear that parametric instabilities
play a crucial role in the interaction of intense
radiation with plasma. ' Some of the effects are
desirable, such as the anomalous absorption and
concomitant heating in confined plasmas. How-
ever, in the laser-pellet interaction, this heating,
if untimely, may prove troublesome for fusion

prospects. ' In addition the presence of the Ram-
an and Brillouin backscattering instabilities' in
the highly underdense region may, theoretically
at least, isolate the core of the pellet from the
radiation.

Because of the resonant nature of some of
these instabilities, any mechanism which causes
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