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Fully developed hydrodynamic turbulence is considered in terms of a steady-state
solution to the exact Fokker-Planck equation for the probability functional of the veloc-
ity field. The nested intermittency argument of Yaglom is restated in this formulation.
A divergent buildup of fluctuations during the energy cascade modifies the #75/3 inertial
subrange spectrum. A physical analogy of the critical exponent 7 to the Yaglom inter-

mittency parameter (1/9) is proposed.

Fully developed hydrodynamic turbulence is
characterized in three dimensions by a cascade
of energy from small to large wave numbers.
The nonlinear inertial terms drive this cascade
which eventually terminates at large wave num-
ber as a result of viscous dissipation. The cas-
cade is characterized by three parameters: g,
the net rate at which energy is dissipated per
unit mass; [, the characteristic length scale at
which the turbulent energy is put into the fluid;
and v, the kinematic viscosity of the fluid. From
€ and v one can form the characteristic length 75
=p3/4¢ "1/* which determines the scale on which
dissipation takes place. Very large values of I/7
correspond to very large Reynolds number and
are characteristic of most oceanic and atmos-
pheric flows. In such flows there is a wide range
of wave numbers [ ! <<k <! in which both ener-
gy input and energy dissipation are negligible.

In this “inertial subrange” one might expect a
universal form for the energy spectrum E(k). If
this function were to be independent of both / and
v, and to depend only on €, then by dimensional
arguments it would be given by E(k) = ce?/3% ~5/3,
This was the form proposed by Kolmogorov and
Obukhov' in 1941,

In 1962, Kolmogorov and Obukhov? proposed a
modified form of their theory in which the stir-
ring length played an essential role, but the vis-
cosity was still unimportant. The essential fea-
ture of the modified theory is that the average
dissipation €, over a cube of side » should have
a log-normal probability distribution with vari-
ance proportional to In(l/¥). The original Kol-
mogorov theory, with €2/3 replaced by (e,%’®),
then gives a modified energy spectrum. In 1966
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Yaglom?® gave an argument for the intermittency
of €, characterized by the log-normal probability
distribution. There is now a considerable amount
of experimental data supporting the Yaglom?*
model, but there are difficulties in its theoreti-
cal justification. Though the entire argument is
correctly based on the absence of an internal
length scale, there is no reference to the under-
lying Navier-Stokes equations. For a wide range
of applications to intermittent phenomena this is
an advantage,® but for a physical understanding
of hydrodynamic turbulence it is a severe limita-
tion, Furthermore there is no theoretical rea-
son why the probability distribution of €, should
be simply related to the energy spectrum E(k)
even though the former is log-normal.

We work with the Fourier transform of the Na-
vier-Stokes equations for isotropic homogenous
turbulence in an incompressible fluid. The sys-
tem is driven by a statistically defined external
force. Since the detailed properties of the exter-
nal force should not be relevant, let us make the
simplification that it is a Gaussian process with
correlation function

(F R H()F X)) = 2h,0(t — £7)6°%. 1)

The equation of motion for the kth Fourier com-
ponent u,%(t) of the transverse velocity fluctua-
tion is then a nonlinear Langevin equation of the
same type studied by Zwanzig® or Kawasaki” in
connection with time correlation functions at
equilibrium. This equation can be transformed
by standard methods to a Fokker-Planck equation
for the probability functional P({u,},t) of the ve-
locity field. This equation, previously derived
by Edwards and McComb,? is

>P=0, (2)
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where
Dk(x8=6dﬁ__ kdkﬁik"2, (3)
A
Mkjlaﬂyzi_(%‘)’s(kBDqu+k70ka6)6kay (4)

A=(21/L)3% &,;,=1 if k+j+1=0, zero otherwise.
In the limit of L -~ <, A becomes d° and

By~ AO(K+] +1).
A time-independent solution is looked for. Com-
pare this solution with the thermal-equilibrium
case considered in Refs. 6 and 7. In that case
there is a fluctuation-dissipation theorem, #,
=vk®, This makes the steady-state solution a
product of Gaussians exp(— 32 jpo 4, %-,") even in
the presence of the nonlinear terms. When the
h, drive the system far from equilibrium, howev-
er, the steady-state probability is Gaussian only
in the limit of small Reynolds number where the
nonlinear terms can be neglected. For large
Reynolds number far from equilibrium the prob-
ability distribution of the «, is far from Gaussian.
The main point of this paper is that this distribu-
tion becomes increasingly intermittent with in-
creasing k, with a variance which grows propor-
tional to In(%l).

The essential simplifying assumption here is
to let the viscosity approach zero, and to assume
that the probability functional is unaffected ex-
cept in the limit of infinite & where the dissipa-
tion will occur. For convenience the fluid is
driven at a single wave number so that

h,=(e/41k?) 6(k —171).
Let us introduce the dimensionless variables
g=kl, v, =u,e 137103, (5)

(The explicit indication of Cartesian components
will be omitted from this point on.) This elim-
inates the dependence on €, but the scaling be-
havior with ¢ must still be examined. The n-
mode probability distribution is

PV -y v)=0(Q +0y+,...,+d,)

x p'(v,, 2PV ,Un-l)’ (6)

where the first factor is due to translational in-
variance. In the original Kolmogorov theory,

the distribution p’ is invariant to the scale trans-
formation

q—3sq, v,~s %, n

This leads to the energy spectrum E(q) = Cq ~5/3,
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The exponent — 2 has the following contributions:
+2 from the definition of E(g) as energy per unit
wave number, +3 from the 6 function in Eq. (6),
— 6 from the two volume integrals in the Fourier
transforms, and - £ from the scaling property
of the velocity u(7).

By examining the cascade through a large range
of wave numbers one can plausibly argue that
p’(v,) does not have the scaling behavior of Eq.
(7). In fact the distribution becomes increasing-
ly intermittent with increasing ¢ in such a way
as to modify the exponent in the expression E(q)
=Cq® but still maintain the power-law form. The
argumentis essentially the same as given by Ya-
glom for p(e,).

Let g=c¥, where c¢>1 and N is a large number.
Consider an intrinsically positive random vari-
able such ay,=v,v.,. Introduce the ratios e¢;
=yy-j+1/Yn-;» Wherey, is associated with wave
number g’ =c", and write

INTYqT€,1€5€3° €Y,

so that
Iny = ilneﬁlnyl.
i=1

Because there is no internal length scale, the
probability distribution of each of the e; should
be identical for all except a few e;, with j of the
order of N. If, in addition, the probability dis-
tributions of the e¢; are nearly independent, the
central-limit theorem applies so that Iny, is nor-
mally distributed. The mean of Iny, is Nm, and
its variance is No,®, where m, and ¢, are the
mean and variance of each of the ¢;. Recalling
that N = (Ing/Inc), and arguing that the final result
should not depend on the scale factor ¢, the mean
and variance of Iny, are given by m =alng and ¢®
=blng. The constants a and b are universal, and
are to be determined by a more complete theory.

To calculate E(q) one notes that the moments
of a log-normal distribution are given by?

(y " =exp(nm + 3n%0?)
so that
»o=q% B=(a+3b).

To estimate B let us go back to coordinate space
and assume that the quantity

Au(r) =[u®@+7) —u®)]?

is also log-normally distributed with mean and
variance proportional to In(l/7). Note then that
the third moment (Au3(»)) must be given correct-
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ly by the original Kolmogorov theory in order
that the total energy cascading through the iner-
tial subrange be constant. (See Ref. 1, Sec. 33.)
This implies a relation between the mean and
variance in » space such that®+*

(Au"(?’)) - C,,€"/3’V"/3 -pn(n-3)/18
and the energy spectrum is
E(q) =Cq -(5/3 + u/9),

where u is the Yaglom parameter. Experimen-
tally,* u =3 to within about 10%.

Clearly, the argument leading to the modified
power law for E(q) is far from rigorous. It has
already been pointed out that there are problems
of determinacy® and internal inconsistency® in
the Yaglom log-normal model, and the present
argument does nothing to correct these deficien-
cies. More recent work shows how modified pow
er laws can arise without invoking an approxi-
mate log-normal model.’® The main physical
point is that a divergent buildup of fluctuations
during the cascade can modify the Kolmogorov
k"5/3 gpectrum even when the energy cascade is
local in & space. The energy cascade is a multi-
plicative random process capable of long-range
effects. This type of long-range effect due to a
short-range force is familiar in critical phenom-
ena, and is exhibited in the critical exponent 7.
It is tempting to identify this with the quantity p/
9 in the present context. The fact that u/9 is ap-
proximately 0.05 for three-dimensional turbu-
lence is very suggestive. The kind of scaling ar-
gument used in our crude model suggests that a
more rigorous argument might be possible using
renormalization-group techniques, but we have
not seen how to carry this out. Since the parame-
ter u has been measured experimentally, and its

existence seems to be a plausible consequence of
the Navier-Stokes equations, such a calculation
would be of considerable interest.
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