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A new argument is presented that yields the following criterion for plane shocks to be
stable: —1(j (dv/dp)H (1, where j2= (p —po)/(vo-v) is the slope of the Rayleigh line,
and (dv/dp)H is the slope of the Hugoniot curve in the pressure-volume plane. The lower
limit is well known and the consequences of its violation are well understood; however,
no such degree of understanding has yet been achieved for the upper limit. It seems like-
ly that it bears an important relation to detonation phenomena.

We have recently re-examined some of the the-
oretical results on the stability of plane shocks:
This work included a careful check by one of us
(G.W.S.) of an analysis by D'yakov. ' In attempt-
ing to understand the conclusions we conceived
a new approach to the problem that leads to a
different stability limit than has previously been
derived.

In the analysis of D'yakov, and also that of Er-
penbeck' whose mathematical technique was dif-
ferent, a plane steady shock is perturbed and the
growth with time of the perturbation quantities
are examined via the one-dimensional flow equa-
tions in linearized form. The stability limits can
be summarized as

—1(j'(dv/dp)„(1+ 2~M~, (1)
where j'=(p —po)/(vo —v) is the slope of the Ray-
leigh line, (dp/dv)H is the slope of the Hugoniot
curve in the pressure-volume (p-v) plane, and
M is the Mach number of the shock with respect
to the material behind,

M = (D —u)/c,

with D the shock speed, u the particle velocity,

(dp/du)H = 2j[1 —j'(dv/dp)H] '.
Points ABC in the p-v plane of- Fig. 1 then map
onto points ABC of Fig. 2 in the p-u plane. Of

(2)

and c the local sound speed.
The ambiguity in sign of the upper limit of Eq.

(1) has not been resolved. D'yakov's analysis
gives both signs, although he evidently rejected
the positive sign. Erpenbeck's result is stated
differently, but when cast in the above form his
treatment appears to yield only the positive sign.
This latter solution has been shown by Gardner to
correspond to the limit for breakup of a single
shock into two waves propagating in opposite di-
rections, and is therefore probably the correct
bound for the problem as posed. ' The lower lim-
it is well known to correspond to breakup into
two waves propagating in the same direction. '

If perturbations of the boundary conditions are
considered as well as perturbations of the shock,
however, we are led to a different stability lim-
it. To see this we map the Hugoniot curve in the
pressure-particle-velocity (p-u) plane by means
of the formula derived from the jump conditions,
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FIG. 1. Hugoniot curve in the P-v plane; Rayleigh
line PQ. FIG. 2. Hugoniot curve of Fig. 1 in the P-u plane.
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there is a change in the amplitude of the shock.
While these reflections alter the details of the
process, we do not expect them to alter the con-
clusion; limited numerical experiments bear out
this premise. Moreover, violation of the upper
limit of Eq. (3) also implies that (dE/dp)H&o,
where F. is the internal energy. It is difficult to
understand how a shock subject to this condition
can attenuate since the internal energy would

necessarily go through a maximum as the pres-
sure decreased.

A more general treatment is under investiga-
tion; however, we tentatively conclude that a
necessary condition for a shock to be stable is
that its Hugoniot curve have positive slope in the
p-u plane, or, equivalently, that the magnitude
of its slope in the p-v plane be greater than that
of the Rayleigh line or its mirror reflection about

the vertical. Although the consequences of viola-
tion of the lower limit are well understood, no
such degree of understanding has yet been a-
chieved for the upper limit. It seems likely that
it bears an important relation to detonation phe-
nomena.
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35064.
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A plane, circularly polarized electromagnetic wave of finite transverse extent must
have a longitudinal component of electric field intensity, as a consequence of V E = 0,
The magnitude of the resulting oscillatory, longitudinal force on plasma electrons may
be large compared with other longitudinal forces. The associated periodic bunching of
electrons along the laser axis results in large collective plasma effects.

The purpose of this note is to illustrate the im-
portance of longitudinal electric fields in circu-
larly polarized laser beams of finite transverse
extent. We calculate the steady-state solution
for this case that can be compared with the in-
finite-plane-wave solution given by Steiger and
Woods, hereafter referred to by SW.~ Taking
this steady state as the zeroth-order solution,
we then show that important plasma effects arise,
even for normal incidence. Linear polarization
with normal incidencq gives the electrons a drift
velocity caused by vxB~„, which eludes steady-
state solution; this term is zero for circular po-
larization. Other types of longitudinal forces
have been studied previously for linearly pola-
rized beams. ~3

A plane, monochromatic, circularly polarized
electromagnetic wave propagating in the z direc-
tion may be represented by the field vectors

E(z, t) =Z(e, +i~e,)e-' '-"'

B(z,t) =a(- i~)(e, +i~e,)e-*' ' '*',

where the physical fields are taken as the real
parts. The c; are unit vectors in the x, y, and
z directions, E and B are real quantities, and
the helicity X is +l (-1) for left (right) circular
polarization. As pointed out by Jackson, limit-
ing the transverse extent of the wave to be finite
requires that the fields in Eq. (l) have a. longitu-
dinal component. In the absence of a net charge
density, V ~ E=O yields

~-E(r, t)= Z(x, y)(e +ice )+— +in e ' e " ' "&.
&x sy
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