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%'This beryllium shield was several times thicker, in
radiation lengths, than similar shields used in other

experiments,
#R. C. Miller, Phys. Rev. 95, 796 (1954).
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A construction is given of an equivalent one-
body potential for the elastic scattering of a par-
ticle incident on a complex target. We consider
explicitly the case that incident and target parti-
cles are identical nonrelativistic fermions and
allow fully for antisymmetry. The method is
inspired by that of Frantz and Mills! and removes
some defects therefrom; it also removes the
basis for their proposed change in phenomeno-
logical optical model analysis. Center-of-mass
motion is still ignored.

Denoting by | @) the scattering state and by
|0) the target ground state, we define the model
wave function as

o, 1) =013, )1 ), (1)

where E is the Heisenberg field operator of second

quantization. For |a) we take the state
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which corresponds to a source of particles of
energy E at the point ;'; if »’ is sufficiently large
only a plane wave actually reaches the target.

In writing, with x=(r, £),
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We make a diagrammatic analysis of this follow-
ing Hubbard,? using Wick’s theorem and regarding
10) as “vacuum.” The denominator has the effect
simply of cancelling all diagrams in the numera-
tor not linked to the terminal operators y(x) and
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we make no error by taking the time-ordered
rather than the retarded product, for the surplus
contribution depends on the possibility of absorb-
ing a particle at r’ from the state |0) and so
vanishes for large 7’.

We construct G by a perturbation theory where
in zero order the real forces are replaced by a
fictitious one-body potential, in general nonlocal,

f drdr T, 00U G, F)3E, 0).
An S matrix is defined by
S S(t, ) = - B)S(, 1),

S, t1) =1, H!(t)=e olg g Hot

where H, is the zero-order Hamiltonian and the
total Hamiltonian is H; +H’. In terms of inter-
action representation operators y, the Heisen-
berg operator § can be written

Ylx) =871(t, 0)p(x)S(¢, 0),

and we have the usual expression

’
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for ¢>¢’, and similarly for ¢£<t’, where |0) is the
zero-order target ground state —assumed non-
degenerate. Expanding above and below in powers
of H’, we have

G=

= -dtn<0|T{H'(t1)- . -H’(tn)}IO). (5)

¢T(x'); G is therefore the sum of linked diagrams
only from the numerator. We call “improper” a
linked diagram which falls into two disconnected
parts on the removal of some particle (as dis-
tinct from interaction) line. Reasoning familiar
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in field theory leads to the integral equation A
Glx,x") =Gy(x, ") =iGy(x, x" "YW (x'", x""")G(x""", x"),
(8)

where repeated arguments are integrated over,
G, is the zero-order value, and -iW is the sum
of all proper linked diagrams—omitting factors
for the terminal lines. Then from (3) with £=0,

¢(F)=¢0(F) _iGo(E’F,-f,)W(Es-f’)-f”)‘j)(f”), (7)
where

s -t
WE, 5, 5) = [t -1)eE Dy, v, (@)
and likewise for G,.

Now if #_ are a complete set of wave functions

for the potential U, with eigenvalues E,,
unoce. %, ®u *@') oce.u Fu *F)
-iG. = & n __ . LA
0 E-E +ie E-E -ie
n n
Since all the occupied states are of negative
energy, for positive E the sign of the infinites-
imal 7€ is unimportant in the last term. Thus
u @ *F)

¢(f>=¢.,(f)+§—§_—E—’:’+.—W<E,f',f~)¢(f~). (9)
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This is just the integral equation for scattering
by an added potential W, and therefore

V(E,T,T)=UF,T')+W(E,T,T’) (10)

is the total optical potential. The scattering
amplitude averaged over an interval of energy
can be obtained from V(E +i¢, T, T’) with € finite.
This and other details will be discussed else-
where.

In conclusion we compare this account with that
of Frantz and Mills. They define an optical model
wave function by projecting on to the zero-order
rather than the real target ground state:

¢'(x, ) =(013(r, 0)la). (11)

In the diagrammatic analysis it is then natural
to use time-ordered rather than Feynman dia-
grams. As a result, for example, the two dia-
grams of Fig. 1 are regarded as distinct and
the second as “proper.” The proper parts of
diagrams are now connected by forward lines

e

FIG. 1. Time-ordered diagrams.

only (particles) and not backward lines (holes).
In the equation replacing (9) the » summation
then runs over unoccupied states only, and the
optical potential is therefore of the form

U+PW’,

where P is a projection operator on to unoccupied
states. Even in the trivial case that the perturba-
tion is only a change AU in the one-body potential,
the “optical” potential based on U would have

this form. In contrast, our development gives

in this case the natural result V=U +AU.

A more serious objection to the use of (11) as
an optical model wave function is that it does not
have an acceptable asymptotic form when inelas-
tic scattering is possible. I |zn) denotes a state
of excitation A, of the target, then asymptotically

- -1 iK,r
<nlzp(r,0)la) “‘fn'r e ’
with
K 2=K?2-2MA .
n 0 n
If
O1=23¢ (nl,
then ¢’ has an outgoing part
-1 iK,r
Zg'/nr e ’

which is a superposition of inelastic as well as
elastically scattered waves.
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