
VOLUME 3, NUMBER 2 P HYSI CAL REVI EW LETTERS JULY 15, 1959

2 This beryllium shield was several times thicker, in
radiation lengths, than similar shields used in other

experiments.
+R. C. Miller, Phys. Rev. 95, 796 (1954).
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A construction is given of an equivalent one-
body potential for the elastic scattering of a par-
ticle incident on a complex target. We consider
explicitly the case that incident and target parti-
cles are identical nonrelativistic fermions and
allow fully for antisymmetry. The method is
inspired by that of Frantz and Mills' and removes
some defects therefrom; it also removes the
basis for their proposed change in phenomeno-
logical optical model analysis. Center-of-mass
motion is still ignored.

Denoting by I n) the scattering state and by
10) the target ground state, we define the model
wave function as

y(r, t) =(O I y(r, t) I n), (1)

where g is the Heisenberg field operator of second
quantization. For I n) we take the state

In) = dt'e g (r', t')10),

which corresponds to a source of particles of
energy 8 at the point r'; if r' is sufficiently large
only a plane wave actually reaches the target.
In writing, with x -=(r, t),

we make no error by taking the time-ordered
rather than the retarded product, for the surplus
contribution depends on the possibility of absorb-
ing a particle at r' from the state I 0) and so
vanishes for large r'.

We construct 6 by a perturbation theory where
in zero order the real forces are replaced by a
fictitious one-body potential, in general nonlocal,

drdr'T() (r, 0)U(r, r')T))(r', 0).

An S matrix is defined by

S(t, t') =—-tH'(t)s(t, t'),8

S(t', t') =1, H'(t) =e H'e

where H, is the zero-order Hamiltonian and the
total Hamiltonian is H, +H'. In terms of inter-
action representation operators g, the Heisen-
berg operator T() can be written

0(x) =S '(t 0)tI(x)s(t o),

and we have the usual expression

(O IS(, t)lI(x)S(t, t')y (x')S(t', - ) IO&

(0 IS(~, -~) 10)

P(x) fdt e=G(x, x''),

G = (0 I T(T((x), iI) (x'))10), (4)

for t& t', and similarly for t& t', where 10) is the
zero-order target ground state —assumed non-
degenerate. Expanding above and below in powers
of H', we have

oo 1 1
G = Q —dt ~ ~ dt (0 I T{H'(t ) ~ ~ .H'(t ))1)(x)(1) (x')jlo)/Q —dt . .dt (0 I T{H'(t ) ~ ~ H'(t ))10).

n-OnI ~ 1 n 1 n n OnI 1' n 1 n
(5)

We make a diagrammatic analysis of this follow-
ing Hubbard, ' using Wick's theorem and regarding
Io) as "vacuum. " The denominator has the effect
simply of cancelling all diagrams in the numera-
tor not linked to the terminal operators |I)(x) and

II)~(x'); G is therefore the sum of linked diagrams
only from the numerator. We call "improper" a
linked diagram which falls into two disconnected
parts on the removal of some particle (as dis-
tinct from interaction) line. Reasoning familiar
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in field theory leads to the integral equation

G(x, x') = G, (x, x') - iG, (x,x")W(x",x"')G(x'",x'), (D (,)

W(E, r, r)= |d(i-f)e W(x, x), (8)

and likewise for C,.
Now if u„are a complete set of wave functions

for the potential U, with eigenvalues E„
' n 5 s nunocc u (r)u *(r') occ. (r) *(r')

E -E +is E E-is-
Since all the occupied states are of negative
energy, for positive 8 the sign of the infinites-
imal ie is unimportant in the last term. Thus

u (r)u (r')
Q(r) =go(r)+p . W(E, r', r")Q(r"). (9)

This is just the integral equation for scattering
by an added potential W, and therefore

(6)
where repeated arguments are integrated over,
G, is the zero-order value, and -iW is the sum
of all proper linked diagrams-omitting factors
for the terminal lines. Then from (3) with f =0,

Q(r) =Q (r) -iG, (E, r, r')W(E, r', r")Q(r"), (7)

where

FIG. 1. Time-ordered diagrams.

only (particles) and not backward lines (holes).
In the equation replacing (9) the n summation
then runs over unoccupied states only, and the
optical potential is therefore of the form

U+PW',

where P is a projection operator on to unoccupied
states. Even in the trivial case that the perturba-
tion is only a change hU in the one-body potential,
the "optical" potential based on U would have
this form. In contrast, our development gives
in this case the natural result V = U+ AU.

A more serious objection to the use of (11) as
an optical model wave function is that it does not
have an acceptable asymptotic form when inelas-
tic scattering is possible. If In) denotes a state
of excitation b„of the target, then asymptotically

-1 gK„r
(nip(r, 0)l o) -f & e

with

V(E, r, r') =U(r, r')+W(E, r, r') (10) K =K -2M' .
n 0 n

is the total optical potential. The scattering
amplitude averaged over an interval of energy
can be obtained from V(E+ie, r, r') with e finite.
This and other details will be discussed else-
where.

In conclusion we compare this account with that
of Frantz and Mills. They define an optical model
wave function by projecting on to the zero-order
rather than the real target ground state:

0 '(r, &) = (01$(r, 0) I a). (11)

In the diagrammatic analysis it is then natural
to use time-ordered rather than Feynman dia-
grams. As a result, for example, the two dia-
grams of Fig. 1 are regarded as distinct and
the second as "proper. " The proper parts of
diagrams are now connected by forward lines

then P' has an outgoing part
-1 zK„r

P$g r e

which is a superposition of inelastic as well as
elastically scattered waves.
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