
VOLUME 3) NUMBER 12 PHYSICAL REVIEW LETTERS DECEMBER 15, 1'959

Work done under auspices of the U. S. Atomic Energy
Commission.

I. Pomeranchuk, J. Exptl. Theoret. Phys. 34, 725
{1958)[translation: Soviet Phys. JETP 34(7), 499 (1958)J,

Cool, Piccioni, and Clark, Phys. Rev. 103, 1082
(1956).

Fredrick Wikner, thesis, University of California
Radiation Laboratory Report UCRL-3639, January, 1957
(unpublished) .

Richard G. Thomas, University of California Radia-
tion Laboratory Report UCRL-8965, November, 1959
(unpublished) .

J. H. Atkinson and V. Perez-Mendez, Rev. Sci.
&str. 30, 864 (1959).

William A. Wenzel, University of California Radia-
tion Laboratory Report UCRL-8000, October, 1957
(unpublished) .

R. M. Sternheimer„Rev. Sci. Instr. 25, 1070 (1954),
Devlin, Perez-Nendez, Hess, Barish, and Solomon,

Lawrence Radiation Laboratory, University of California
(private communication) .

Chen, Leavitt, and Shapiro, Phys. Rev. 103, 211
(1956).

p. —MESON DECAY

C. Fronsdal
CERN, Geneva, Switzerland

and

S. L. Qlashow*
Institute for Theoretical Physics, Copenhagen, Denmark, and CERN, Geneva, Switzerland

(Received November 18, 1959)

It was originally suggested by Yukawa' that the
muon decay may be mediated by an unstable
boson with weak couplings to lepton fields. More
recently, '~ ' a charged, spin-one boson has been
proposed in order to generate the V-A form of
the weak decay interactions. It has already been
pointed out' that a charged scalar intermediary
can give rise to the desired couplings, providing
an alternative but generally equivalent theory of
the weak interactions. This applies when the
first-order Kemmer formalism for spinless
bosons is employed, but not with the use of the
more conventional Klein-Gordon second-order
theory.

The field equations in the Kemmer theory may
be written

- l -2 (p.) (p.) (e) (e)
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Only in the absence of any vector interaction .'s
cp simply proportional to 8 cp. The induced
normal muon decay interaction, to lowest order
in g ' ' and g ' ' is
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when both scalar and vector interactions are
present, where
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The first term is a purely local V-A interaction,
the second a nonlocal S-P interaction. If g2' '

=0, the scalar admixture for muon decay be-
comes m'I 'm'e'jm' —less than 10 ~ for nucleonic
mass of the intermediary. ' Alternatively, if
either or both of the factors [g, '&'+ g, '&'(m'&'jm)]
and [g, ' '+g, ' '(m' 'jm)] are set equal to zero,
the normal p, -decay interaction (to this order in

g) becomes a purely local one.
Using the Klein-Gordon formalism, we obtain
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a muon decay interaction identical to Eq. (2) ex-
cept for the absence of the direct vector coupling.
The two versions of the spin-zero theory are
identical for g, ~'=0, and in general differ only
by a direct self-interaction of J&+'. The choice
between these formalisms depends upon whether
one regards first-order or second-order field

equations as the more basic. [It is only the
Kemmer theory that may be developed according
to the canonical formulation of Schwinger. ']

For the discussion of p, -e+y, we shall assume
g2' '= 0 and neglect finite contributions propor-
tional to the electron mass. The matrix element
for this mode becomes (q=photon momentum)

(u) (e)

where K is a cutoff to the divergent momentum
integration, and c is a finite constant which de-
pends upon the manner in which the cutoff is
introduced. The decay interaction contains a
finite, point-like, "moment" interaction, and a
divergent "charge" interaction which does not
contribute to the free-particle decay. The
branching ratio for the decay of a free muon
into the e+y channel is

p=o&/24m = &0 ',
which is -40 times greater than the current ex-
perimental upper limit. ' In contrast to the re-
sult with a vector intermediary, ' 'o the result
is both convergent and unambiguous.
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The few hitherto known wave-like exact solu-
tions of the Einstein gravitational equations
represented either plane'~' or cylindrical waves.
We here intend to derive a new class of solu-
tions, displaying a lesser degree of symmetry,
and thus more generality.

Let us consider the metric

ds = - dx' "dy2 - dz +dt' - 2f (x, y, z + t) (dz +dt) .
One can easily show that R =Rzt =Rtt =fxx+fyy,
and other components vanish. If f is a harmonic
function of x and y, this metric thus satisfies
Einstein's equations in vacuo, whatever may be
its dependence on (z+t).

A convenient tetrad of orthonormal vectors is

I& &»
= (cosa, sina, 0, 0),

k

&&&&z =(-sina, cosa, 0, 0),
k

&si =( f~f)

&&4& =(0~0~ f~ &+f)~-k

where tan(2a) =(fxy/fxx). The only nonvanish-
ing independent physical components4 of the
curvature tensor are

o=R =-R =(f +f ')
(min 1) (m2n2) xx xy

where m and n take the values 3 and 4 only. Our


