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The possible existence of an energy gap in the
spectra of nuclei, analogous to the energy gap in
the theory of superconductivity, has been the
subject of great interest recently. '~ A criterion
for the superfluidity of infinite nuclear matter has
been given in the form of a variational principle. '
In this Letter we report on computations which
are an improvement over those in CMS in three
regards; the effective mass approximation has
been removed, more realistic two-body potentials
have been employed, and superior trial functions
have been obtained. With these modifications we
find that the criterion is satisfied, and nuclear
matter is superfluid. That is to say, the lowest
state of nuclear matter is a superfluid state sep-
arated from the first excited state by an energy
gap. In this ground state, which is unobtainable
by perturbation theory (and lower in energy than
the state described by Brueckner et al. ), nucleons
are strongly correlated. The correlation function
g(r) satisfies an equation' which may be ex-
pressed as the criterion for the extremum of a
quantity z(0). Thus the criterion for superfluidity
may be given' in the form
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where g(r) is a trial function with Fourier sine
transform g(k), v(r) is the true two-body poten-
tial, Sk+ is the Fermi momentum, and m* is the
effective mass at the Fermi surface. If the ef-
fective mass approximation is not made, then
Eq. (1) is replaced with
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where e(k) is the effective one-body potential for
a particle in infinite matter.

The arguments of CMS suggest a trial function
of the form

+ v r p r dr~
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(4)

where u(r) = sink&r - P(r), and u(k) is the Fourier
sine transform of u(r).

In the limit that k&-0 the basic approximations
of the theory probably break down. In this limit
we can, however, develop mathematical results
pertaining to the variational principle which give
insight at nonzero values of k+. If k+-0 then in
the effective mass approximation the variational
principle is minimized by a solution of the
Schrodinger equation,
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where y(r) is arbitrary except that it approaches
sink&r as r-~, and p is a variational parameter.
In this case Eq. (2) yields for the leading term,
in the limit as p-0,
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Combined with the results of CMS, given above,
this suggests a trial function with

y(r) = g „(r), r(r,

= sink r, rp&r (8)

where g is an appropriately normalized solu-ch ~0

tion of e Schrodinger equation and r, is chosen
so that g(r) and g'(y) are continuous at ra. If we
write

8'k'
e(k) = + V(k),

then Eq. (4) may be written, after using the rela-
tion between kinetic and potential energy for a
solution of Eq. (5),

, =I (long range)+I (dispersion)
x(0)

4minP' L

y I (Pauli),

where

IL —— v r sin kFrdr,
rp

rp
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0 p

k

I =4 ek -ek u'k dk. (8)

In this form the equation is particularly suited
for numerical computation since u(r) is nonzero
only over a finite domain; V(k) is essentially non-
zero over only a finite domain, thus requiring
the evaluation of the Fourier sine transform of
u(r) for only a finite domain of k values, and in
contrast to Eq. (2) none of the integrands have
points of singularity. Numerical computations
have been made employing a high-speed digital
computer and using the Gammel- Thaler potential
for 'S states' and a variety of choices for V(k)
and kF. For kF we have used 1.34 f and 1.40 f '
appropriate to the observed density in heavy nu-
clei, corresponding to the equations for nuclear
radii R = 1.13A~' f and R =1.08A~' f. [1 fermi (f)
-=10 "cm. ] We have also examined k& = 1.48 f '
which corresponds to a density slightly higher
than that observed in finite nuclei but perhaps
close to the density of infinite nuclear matter.
For the single-body potential in infinite nuclear

matter V(k), we have used the values given by
Brueckner and Gammel, ~~' as well as an equation
of the form

V(k) = —Vo/(1+ o.k~), (9)

where we have chosen the values of Vp and n by
the following two criteria: (i) V(k&) shall equal
the binding energy per nucleon (15.5 Mev) plus the
kinetic energy at the Fermi surface (5'k&'/2m);
(fi) the effective mass at the Fermi surface is
m =0.67m, i.e. ,

de(k) A, k

dk m

Table I. Parameters for the single-body potential
in infinite nuclear matter [Eq. (9)].

Vp (Mev)

1.34

1.40

1.48

80. 71

87.41

96.35

0.2992

0.2815

0.2646

The failure of V(k) as obtained by Brueckner and
Gammel to satisfy criterion (f) is the reason for
our choosing a potential of the form of Eq. (9).
We find the parameters listed in Table I.

The results of the calculation are given in
Table II where it may be seen that for both choices
of V(k) and k&=1.34 f ' there is superfluidity, '
while at kF —1.48 f ' there is no superfluidity.
For kF —1.40 f ' there is superfluidity with the
potential of Eq. (9), but not with that of Brueck-
ner and Gammel. This is a variational calcula-
tion so that in the cases where the values of g(0)
are very close to zero, one can expect that a
superior trial function might well yield super-
fluidity.

It should be recalled' that the hard core in the
two-body potential is extremely important in the
calculation since in its absence there is super-
fluidity for any attractive potential. ~ It can also
be seen in Table II that a potential with a positive
phase shift at momentum SkF does not in general
suffice for superfluidity. ' The small values of I&
show why a trial function of the form we have
chosen is so successful.

We have investigated the validity of the effective
mass approximation by computing Z(0) at k&-1.40
f ' and with m*=0.67m. In the same arbitrary
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Table II. Values of the various terms in Eq. (8) in arbitrary units, for different
values of ky and two different single-body potentials in infinite matter.

ID IP IL+ID+IP

= 1.34; ~ of Eq. (9) -55.4 21.0 -32. 0

k&=1.34; V of B and G

k& =1.40; + of Eq. (9)

k+ =1..40; V of B and G
g

=1.48; ~ of Eq. (9)

-43.9

-43.9

-28.8

43.3

44. 2

25. 1

2. 6

3.3

3.5

4. 9

- 9.5

-17.9

+ 3.8

+ 1.2

k& = 1.48; V of B and G -28. 8 45.6 4. 8 +21.6

See references 4 and 5.

units employed in Table II, we find II = -43.87,
ID =79.79, and I&-2.85. Although the Pauli term
is estimated satisfactorily in this manner, it can
be seen that the dispersion term is grossly over-
estimated. This is because the hard core in the
two-body potential introduces very high Fourier
components into the correlation function, thus
making the dispersion term sensitive to the nature
of the single-body potential at high momenta.

Evaluation of the energy gap and the two-body
correlation function, with a discussion of the im-
plication of these results in the theory of nuclear
structure, will be the basis of a future communi-
cation. The existence of an energy gap in finite
nuclei, of the type demonstrated here to exist in
infinite nuclear matter, is strongly suggested by
these computations, in agreement with experi-
mental evidence.
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For purposes of numerical computation we have

fitted the curve of Brueckner and Gammel with

V(k/k+) = [-111+29.1 (k/k/2 - 8.26 (k/k+) s] Mev,

k/k~- 2.4

k/k&) 2.4.

This may be contrasted with the results of Emery
who finds that the Fourier component of the two-body
potential at the Fermi momentum must be negative for

Cooper singularities in the Bethe-Goldstone equa-
tion. The Bethe-Goldstone equation is, however, dif-
ferent from the basic equations of our theory (CMS,
Eqs. (18) and {19)j so that a direct comparison is not
possible. Certainly an energy gap exists in our theory
despite the fact that all the Fourier components of the
two-body potential are infinite.

~De Dominicis and Martin replace the two-body po-
tential with an effective potential which is nonsingular
and everywhere attractive, and thus obtain super-
fluidity for nuclear matter.

Soloviev finds as a criterion for superfluidity that
the two-body potential be essentially attractive at
energies corresponding to the Fermi momentum. This
differs from our criterion in that it ignores the con-
tributions of the Pauli and dispersion terms, I~ and
ID.
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