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We should like to point out the existence of an
exact and simple relation between the electron
Green's function renormalization constants in the
general class of "manifestly" covariant gauges.
We consider those gauges where the unrenormal-
ized zeroth-order photon Green's function in
momentum space has the form

D =D '-k k X(k),
pv pv p, v

where X is an arbitrary function of k. By D
we shall mean a covariant Green's function in a
fixed gauge.

One can show that the exact, unrenormal. ized
electron Green's functions in the respective
gauges are connected by the relation

G~(x -x') = exp(ie, '[X(x -x') —X(0)])G,(x -x'), (2)

where e, is the unrenormalized charge of the
electron, and

z(x) = eik. xx(k).
„(2m)'

This result has been derived previously, ' but

in a manner which seems to us somewhat ques-
ti.onable. An independent and rigorous derivation
is possible using the techniques of external
sources, and is given in papers on the gauge
group in electrodynamics. '&' The authors of
these latter papers were motivated by somewhat
different considerations. It should also be marked
that the connection between the Green's function
in the radiation gauge [which does not fall into
class (1)] and the Lorentz gauge has been de-
rived' by an alternative method which should
also apply to the case under consideration.

If the transformation is nonsingular, the func-
tion X(x) vanishes as x'- ~. Further, if the
singularity of G at p'=-m' is made rigorously a
pole by cutting off the soft photons with an in-
variant photon mass p. , then asymptotically in

any gauge

as (x -x')' - ~, where
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~lk'+ p.

' k'+A') k2'

so that we study the one-parameter family of
gauges for which

(8)

k k)( 1 1
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In this case, X(0) =i(y/8m')in(A/p); therefore

(10)

where no=co'/4w is the unrenormalized coupling
constant.

If A is allowed to approach infinity, it is clear
that Z2~ can approach a finite and nonvanishing
limit at most in one of the gauges of class (9).
Thus, if as A- ~,

„(d )
iP (x-x')

G (x-x)=m, (2m)' y p+m

since m, the physical mass of the electron, is
the lowest invariant frequency contained in

G(x -x'). Z, is the so-called wave-frequency
renormalization constant. It follows from Eq. (2)
that the wave-function renormalization constants
in the two gauges ar e connected by the r elation

Z,y = exp{ - ieo'X(0))Z, '.
To give an example of this relation, one may

take for D „„the function

D '=6 (
PP P Pllk2 + ~2 k2+A2~~ 9 ()7

where p. is the photon mass and A is inserted so
that we may regard local electrodynamics as the
limit of a cutoff theory. Then we choose for X

the function

G(x -x') -Z,Gm(x -x') (4) (A/ )
6 /o27oF f
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where Z,~ is finite and not zero, then in the
gauge in which y = e the renormalization constant
would be finite and equal to Z,~ in this limit.
However, we wish to stress that even if such a
special gauge did not exist, these considerations
would in no way affect the possibility that the
unrenormalized physical theory is consistent.
Indeed, the reason that a simple relation of the
type (2) exists is that the gauge change refers to
the way in which the longitudinal and scalar
quanta are coupled to the electron, and these
quanta (because of the conservation of the fluc-
tuating vacuum currents) enter in an essentially
noninteracting way. The factor (A/p)y~o/2~ is
produced by the change in the number of these
quanta in the state in which p' = -m', and con-
sequently has nothing to do with the physical
theory, which is concerned only with the trans-
verse quanta. Therefore, the fact that these
degrees of freedom introduce inconsistencies
only indicates that the use of formulations of
electrodynamics that employ them is dangerous
in the investigation of the consistency of the
(unrenormalized) physical theory at high ener-
gies. This points to the radiation gauge as use-
ful for these purposes since it does not fall into
class (1), unphysical quanta are avoided, and
the Green's functions are directly related to
matrix elements of operators in a Hilbert space
with a physically acceptable (positive) metric.

In spite of these difficulties, which have to do
with the consistency of the local theory, one may
still make use of the gauges of class (9) in a
pragmatic way provided that A is chosen larger
than any energy of physical interest. In this case
it is useful to note that information about the in-
frared structure of the Green's function in var-
ious gauges may be derived from Eq. (2). It
should be stressed again that changing the gauge
alters only the number of scalar and longitudinal
quanta in the various states and hence has noth-
ing to do with physics. However, simplifications
in calculations may occur if the gauge is chosen
properly. In the low-energy domain (as opposed
to the infinite-energy domain) the transverse
quanta should enter in an essentially noninter-
acting way once the charge is renormalized. It
is therefore not inconceivable that cancellations
between real quanta and the longitudinal and
scalar quanta could be arranged so that a gauge

p y y w
m

yP+m P+m (12)

The work of Yennie' indicates that such a gauge
exists with

y =1-3(n/o. o), (13)

where n is the renormalized coupling constant.
This is explicitly verified to the fourth order by
Solov'ev. '
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of type (9) might exist where G has rigorously
a pole at p' = -m', in the limit as p —0. In this
case, the singularity in any other gauge can be
calculated quite simply by using (2).

If we allow p - 0, the difference ie,'[X(x) - A(0)]
remains finite and becomes equal to

Therefore, for A(-x')~'»1,

ie,'[X(x) —
A.(0)]= (ya, /2m)ln[m(-x') ']+ const. (11)

Suppose now that there exists a gauge with

y =y, where the Green's function has a pole at
p' = -m'. Then it is possible to show that in the
gauge corresponding to an arbitrary value of y,
the Green's function in the neighborhood of
P' = -m' will behave like


