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The effect of the optical excitation of a phosphor
may in certain cases manifest itself by a change
in the paramagnetic resonance spectrum of the
phosyhor. Attempts to observe such changes in
inorganic yhosphors have previously been made

by Hershberger' and Low'& without success. This
Letter describes an experiment in which para-
magnetic resonance absorption was used to ob-
serve the optical excitation of the infrared stim-
ulable phosphor SrS:Eu, Sm.

The physical properties of this phosphor have
been widely investigated, the most extensive in-
vestigations being those carried out by Keller
et al. ' One of the properties of this phosphor is
its ability to store energy when optically excited
with ultraviolet or blue radiation. This stored
energy may subsequently be released by irradia-
tion with either infrared (970 mp, ) or orange
(590 m p) wavelengths.

A simplified band-theory model was proposed
by Keller' to explain this and other properties
of SrS:Eu, Sm. In brief, europium is present in
the SrS lattice as Eu'+ and samarium as Sm'+.
Excitation by ultraviolet radiation corresponds
to SrS base absorption with the formation of an
electron-hole pair. The electron is subsequently
trapped by the Sm + which becomes Sm+ and
the hole trapped at the europium site giving Eu'+.
Excitation by blue radiation results in a direct
ionization of Eu~+ to Eu+ with the electron sub-
sequently being trapped by the Sm~+ site. In the
case of either ultraviolet or blue excitation the
net effect is to change Eu+ to Eu+ and Sm + to

Sm'+. The Eu~ has an 'S», ground state which is.
paramagnetic. 2 The Eu'+ ground state is ~F0 and
is nonmagnetic. Excitation of this phosphor
should therefore manifest itself by a diminution
in the Eu'+ paramagnetic spectrum.

The stored energy may be exhausted by irra-
diating with the wavelength which removes an
electron from the Sm'.+ site to the conduction
band. The Sm'+ may be ionized in two ways and
hence there are two wavelengths, 970 mp, and
590 mp, , that may be used. ~

A diminution in the magnitude of the Eu'+
paramagnetic syectrum when optically excited
has been observed for a SrS:Eu, Sm phosphor of
the following composition: SrS, 6$ SrSO„6@
CaF„0.02@ Eu, and 0.02 Vo Sm. The percent-
ages are in terms of molar percent. The prepa-
ration has been described in reference 3. A
Varian Associates 4500 EPR spectrometer was
used. The rectangular cavity that was used
operated in the TE,O, mode and had one end re-
moved and replaced with a stainless steel screen,
96x96 mesh, which allowed light to irradiate the
sample in the cavity. The powder sample was
mounted on a 0.9- by 0.4-inch Teflon button
placed along the region of maximum H, field at
the middle of the cavity. An Osram xenon arc
lamp XBO 1001 combined with a Bausch and
Lomb 33-86-40 grating monochromator were
used to irradiate the sample. All measurements
were made at room temperature.

A plot of the relative stored energy against
wavelength of the exciting light was made in the
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FIG. 1. Relative stored energy as measured by the
diminution in the Eu2+ paramagnetic spectrum versus
exciting wavelength.

following way. The sample was first brought to
its exhausted state by irradiating with 970-mp,
light for four minutes. The light was removed
and the paramagnetic spectrum of Eu'+ in the
exhausted sample was plotted. The sample was
then irradiated with the particular wavelength of
exciting light for four minutes. The light was
removed. The Eu~+ paramagnetic spectrum was
replotted, the diminution in its intensity being
proportional to the stored energy in the phosphor.
The sample was then once again exhausted with
970-my. light before a second exciting wavelength
was used. The results are given in Fig. 1. The
heights have been corrected for constant number
of exciting photons. The graph of Fig. 1 agrees
favorably with that found by Keller, Mapes, and
Cheroff' who used as a measure of the stored
energy the intensity of the light emitted by the

sample when 970-mp, light was incident on it.
As a measure of the efficiency of optical ex-

citation it is noted that at the point of maximum
optical excitation, 475 mp. , the Eu~ paramag-
netic spectrum decreased by 13% in magnitude.
This should be taken as a lower limit of the
efficiency as the light abscrption is not uniform
throughout the sample, decreasing exponentially
from the surface inward. We plan to measure
the variation of efficiency as a function of the
relative europium and samarium concentrations.
The experiment will also be repeated at liquid
helium temperatures looking for a change in the
Sm paramagnetic spectrum.

It may be added that 590-m p, light was found
to be equally as effective as 970-mp, light in ex-
hausting the phosphor, which agrees with the
results of Keller and Pettit. '

In conclusion the use of paramagnetic reso-
nance absorption to detect the optical excitation
provides an independent verification of the sim-
plified band-theory model proposed by Kellers
for this phosphor.

The author wishes to acknowledge the encour-
agement and interest of Dr. S. P. Keller and Dr.
W. V. Smith, and wishes to thank Mr. J. Kucza
for material preparation.
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Evidence is described that indicates that the
triton is a previously unrecognized fission prod-
uct. Tritium was shown to be present in a ratio
of one triton per (1—2)x10' fissions in samples
of irradiated natural and enriched uranium and
in an irradiated mixture of transuranium iso-
topes. The triton-to-fission ratio was within a
factor of two for these samples even though the
concentrations of tritium per gram of irradiated
material ranged over a factor of one thousand.

The lithium content of the irradiated uranium was
proved not to be the source of the tritium; nei-
ther was the tritium present as the result of dif-
fusion from the tritiated heavy water moderator
of the Savannah River piles. Confirmation of
the triton as a product of fission may contribute
to the understanding of ternary fission and may
have a practical application to burnup analysis.

A search of the literature of ternary fission
showed that the formation of the triton in fission


