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FIG. 3. The radius at
half maximum of the
self-correlation function
(closed circles) and the
half-width at half maxi-
mum of the correlation
function for first neigh-
bors (open circles) as
functions of the time.
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atoms in the first shell move in a somewhat com-
plicated way. At times t 8 &10 sec the atoms
seem to be settling down into a diffusive type of
motion, but the rate of diffusion appears to be
less than the rate of self-diffusion measured by
tracers. This suggests that, in addition to the
small motions ("jitter") of the atoms, which show

up as a continuous diffusive expansion of the cor-
relation functions, there also occur significant
numbers of comparatively large diffusion "jumps. "
Such behavior was previously postulated' to ex-
plain the results on water. The distribution of
"jump sizes" could possibly be studied by means
of the shapes of the correlation functions. The
present results, however, are not sufficiently
precise for this to be possible.

Details of the experiments and of the analysis
will be published on conclusion of the work.
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The theory of Townes et al. ' of the Knight shift
in the frequency of nuclear resonance in a metal
predicts a fractional change of

unit volume, z is the atomic density, and the
square of the wave function is evaluated at the
nucleus and averaged over the Fermi surface. 2

The measurements of Reif' and of Androes and
Knight4 indicate shifts for superconducting
mercury and tin almost as large as that for the
metals in the normal state. This would seem to
indicate according to Eq. (1) that the supercon-
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ducting and normal susceptibilities are prac-
tically equal, even at zero temperature (which
is the case to which we limit ourselves). This
interpretation conflicts with the theory of Bar-
deen et al. ,

' which establishes a strict energy
gap and a vanishing spin susceptibility for the
superconducting ground state. ' The exact pair-
ing of electrons in momentum space has been
relaxed by Heine and Pippard' to permit spin ex-
citations and a susceptibility almost as large in
the superconducting as in the normal state. It
is not impossible that this modification of the
BCS theory does indeed provide the correct ex-
planation of the finite Knight shift for supercon-
ductors. But on the other hand, there is a danger
that when the details of this modification are
worked out, a discrepancy may arise with the
specific heat. If the spin excitations which are
allowed by Heine and Pippard prove to have appre-
ciable statistical weight, they will yield a meas-
urable contribution to the specific heat, in dis-
agreement with experiment. Furthermore, evi-
dence against the existence of the spin excitations
is provided by the marked increase in the nuclear
spin relaxation time in superconducting aluminum,
as the temperature is decreased. '

The purpose of the present note is to propose
an alternative explanation of the Knight shift in
'superconductors which is free of the above diffi-
culties. We assume that low-lying excitations do
not exist for a bulk superconductor, for which the
susceptibility can indeed be taken to be zero. But
we present some theoretical considerations which
indicate that for a finite sample the susceptibility
should rise when the geometrical dimensions are
made smaller than the coherence length, to a
value comparable to that in the normal state.
This proposed size dependence is quite plausible,
since it is generally accepted that the supercon-
ducting state depends in a very essential way on
long-range correlations.

In order to establish that the superconducting
Knight shift should be expected to possess a size
dependence, it is convenient to avoid calculating
the susceptibility directly, and instead to con-
sider an alternative way of computing the shift.
The effect results from an interference of two
perturbing terms H' and 0" in the Hamiltonian
for the electron system. The first represents
the interaction between the electron syins and
the laboratory magnetic field, and the second
that between the electron spins and the nuclear
magnetic moment. The part of the perturbed
ground-state energy which depends in second

order upon the interference of the two perturba-
tions is given by

H~'H 0"+H "H

n0 EO E (2)

( )
sillÃ cosx

2 (4)

p, is the nuclear magnetic dipole moment, 0, the
wave number at the top of the Fermi sea, and r
the radial distance from the nucleus. This mag-
netization density can be integrated to give a total
induced magnetic dipole moment in the vicinity
of the nucleus whose ratio to the inducing nuclear
moment is equal to

4m M(r)r'dr =—g.Sm

~p 3

where the matrix elements are taken with respect
to the unperturbed stationary states of energy
Ez. This equation can be interpreted in two ways.
One can imagine that H' produces a change g' in
the wave function and that the energy of the per-
turbation H" is then computed as an expectation
value with respect to this perturbed wave func-
tion. This corresponds to Eq. (1), where the
laboratory field first polar izes the electron gas,
which then acts upon the nucleus. Alternatively,
one can think of H" as producing a different
change (", and can then use this wave function
for computing the expectation value of H'. In
other words, one can first "turn on" the nuclear
magnetic moment, which then becomes "dressed"
with a polarization cloud which changes its g fac-
tor and consequently its resonance frequency in
the laboratory field. The latter picture has some
merit conceptually, since in actual fact it is
never possible to turn off the nuclear moment;
the laboratory field is, of course, at one's dis-
posal. We are therefore motivated to calculate
the total magnetic moment induced in the electron
gas by the nuclear magnetic dipole.

For our argument it is essential to establish
the spatial distribution of the magnetization. We
give the result of a calculation using the simple
free-electron model, where the wave functions
are plane waves. The nucleus is considered to
be only a magnetic dipole; its Coulomb field is
ignored. By applying Born's approximation we
obtain a magnetization density' of

M(r) = (4p y/3r') j,(2&,r),

where the spherical Bessel's function is
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In the present model the square of the wave func-
tion equals the atomic density, so that the Knight
shift predicted by Eqs. (1) and (5) is identical.
This agreement was to be expected because of
the equivalence of the two different ways of com-
puting the energy change given by Eq. (2). But
this second way of computing the Knight shift
has the advantage of providing an intuitive pic-
ture for the effect. The magnetization density
times 4mr' is plotted in Fig. 1, which shows that
most of the effect comes from close distances
(high-energy virtual excitations). The arrow in

Fig. 1 indicates approximately one-half of the
average interelectron separation, and it is very
natural to assume that the magnetization density
at distances from the nucleus of this order of
magnitude is completely unaffected by the super-
conducting transition.

The transition to the superconducting state can
be expected to have an effect on the polarization
cloud only over distances of the order of the
coherence length, which is hundreds or thousands
of times greater than the mean radius of the cloud
shown in Fig. 1. To illustrate this, a very crude
energy-gap model suffices. Let us modify the
free-electron model by leaving all the matrix
elements unchanged but by replacing all excita-
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FIG. l. Radial magnetization density vs radius x,
measured in units of (2ko) tor (4x) times the
deBroglie wavelength at the Fermi surface]. The
ordinate is proportional to (dh') times the magneti-
zation contained between spheres of radius r and
F+dF. The curve represents the polarization cloud
surrounding a point magnetic dipole (nucleus) in a
free-electron gas and is given by j~(2kpr). The arrow
indicates a radius roughly equal to one-half of the
average interelectron separation, within which most
of the polarization cloud is contained. The supercon-
ducting transition cannot affect this cloud, which
changes the total magnetic moment of the dressed
nucleus and consequently yields the Knight shift, be-
cause it arises from virtual excitation. to states very
far above the energy gap.

tion energies less than Skoz/m, by this quantity
itself. The reciprocal of the parameter ~, which
specifies the gap energy, is a rough measure of
the coherence length. Kith this change, an addi-
tional contribution to the magnetization density
appears of the form

4p, y 1-cos~r
3 ad K1

(6)

(Here we have omitted a fluctuating term propor-
tional to cos2kor which gives no net magnetiza-
tion. ) Integrating over this, we find an additional
induced moment corresponding to a fractional
change in the nuclear g factor of

8w

p, 3 X ~

Adding this contribution to that found in Eq. (5)
above, we obtain a vanishing net Knight shift, as
expected for a strict energy-gap model which can
possess no bulk susceptibility. But it is essential
to note that the density of the compensating cloud
described by Eq. (6) is extremely low compared
to that of Eq. (2) at distances from the nucleus
of the order of interatomic dimensions. It is
only by integrating out to radii of the order of the
coherence length that we produce a cancellation
of the close-in cloud responsible for the normal
Knight shift.

Because of the boundary effects, it is difficult
to give a rigorous treatment of the compensating
cloud set up in a small sample. For simplicity,
imagine that the nucleus is at the center of a
sphery of diameter L much less than $, = z ', the
coherence length. As a first approximation we
can take the magnetization density at any distance
less than L/2 to be the same as that which would
exist around the nucleus in a bulk sample. Then
it follows from the preceding paragraph that the
superconducting fractional decrease in the Knight
shift is of the order of L/$, «1. But this is much
too crude a treatment, as can be seen from the
following transport picture:" The magnetization
cloud in a bulk sample is established by electrons
which interact with the nucleus and then carry
the effect of the perturbation radially outward.
In a small sample, these electrons will be re-
flected back at the surface and will build up a
magnetization larger by the factor f, the number
of times that they can be scattered before the
spin-orbit force flips their spin. Thus we ob-
tain, to within a multiplicative numerical con-
stant, the following rough equality for the normal-
super conducting diff erence:
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(~ - ddt )/~ =fL/(c.

(This etluation applies only when L is less than

$,/f. For larger values of L, ~s/~„approaches
zero. ) Substituting from reference 4 the values
(68+ - Idly)/~n = 0.27 and L, = 100 A (a weighted
geometrical mean value of the diameter and
thickness of the platelets), and $, =2500 A from
reference 5, we obtain f =6, a reasonable value.

Summarizing, we have seen that the Knight
shift results from a normal magnetization cloud,
which is closely bound to the nucleus and is the
same in both the normal and superconducting
states, and a diffuse compensating cloud which
appears only in the superconducting state and is
of very great linear dimensions. Since only a
fraction of this cloud is contained in a small sam-
ple, the superconducting shift is expected to be
smaller than but comparable to the normal shift.
The actual magnitude of the decrease has been
interpreted in Eq. (8) as being dependent on the
spin-orbit coupling. It should be emphasized
that the spin-orbit force is quite essential, since
it is only by means of it that the total electron
spin ceases to be a good quantum number. It then
becomes possible for the magnetic field to mix
in virtual excitations from above the gap, yield-
ing a nonvanishing susceptibility. Since the spin-
orbit coupling is very strongly dependent on atomic
number, f may be expected to be very large for
a light element, which should consequently show
a Knight shift very much reduced in the supercon-
ducting state, in definite contrast to the nearly
full shift exhibited by the heavy elements. It
would be highly desirable to test experimentally
this aspect of Eg. (8), as well as the linear de-

pendence on I..
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Recently there has been much interest in the
effects of a magnetic field on ultrasonic attenua-
tion at low temperatures, and much experimental
work has been directed toward the study of lon-
gitudinal' waves. To our knowledge, resonances
in the attenuation of shear waves in single crys-
tals have not been previously reported in detail.
These are of interest because recently published
theories'&' predict the existence of oscillations

in the attenuation versus magnetic field data only
for certain orientations of field, polarization,
and propagation directions. In particular no
oscillations should be observed when the mag-
netic field is parallel to the polarization direc-
tion, although the attenuation should decrease
with increasing magnetic field. Our preliminary
observations show that oscillations occur in
shear wave attenuation when the field. is either
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