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The effective-range formula is well known to
be a useful description of low-energy scattering
phase shifts. However, except at the limit of
zero kinetic energy, the effective-range formula
is, in general, not exact. We report here a study
of the deviation from the effective-range formula
in light of the analytic structure of partial-wave
amplitudes as suggested by Mandelstam. ' The
problem under consideration is the s-wave nuc-
leon-nucleon scattering in both the singlet and
the triplet states.

The effective-range formula, as it stands,
implies that the only singularities of the s-wave
amplitude are two poles in the complex momen-
tum plane:
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Here q is the center-of-mass momentum, a is
the scattering length, and r is the effective range.
The effective-range expression (1) can equiva-
lently be characterized by q, and the residue at
q~.
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where q, is chosen rather than q, because it has
a closer relation to the "interaction. " In fact, if
(iI",) is sufficiently large, q, will become a bound-
state pole. This connection between the triplet
s-wave scattering amplitude and the deuteron
bound state is well known. We note also that, as
long as the effective range is positive, q, is al-
ways on the upper half-plane.

According to Mandelstam's representation,
partial-wave amplitudes for nucleon-nucleon
scattering are analytic on the upper-half q plane
except for branch points on the positive imaginary
axis corresponding to thresholds for one-, two-,
and three-meson exchange, etc. Bound-state
poles will appear as the "strength" of the branch
points becomes sufficiently great. In view of the
analyticity implied by Mandelstam's representa-
tion, the "interaction pole'* (q, ) in the effective-
range formula can be considered as an approxi-
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The subtraction is made in Eq. (7) to keep the
consistent asymptotic behavior of h(v) -O[(1/v)lnv]

mate replacement for the branch cuts predicted
by field theory. It is evident that an improvexnent
over the effective-range formula can be obtained
by including the one-meson branch cut exactly,
and allowing the pole to represent only the aver-
age contribution of the remaining cuts which are
farther away from the physical region (the one-,
two-, three-, ~ ~ ~ -meson branch points are
located at q=i/2, i, Si/2, ~ ~ ~, respectively).
We shall construct such a function in the follow-
ing paragraph.

It is convenient, at this point, to introduce the
momentum-square variable, v = q'. The s-wave
amplitude can be written as

1hv=
v 'cot6(v)-iv '

The unitarity condition implies that the inverse
function h '(v) has a branch point at v = 0 with a
discontinuity across the cut from 0 to ~ given by
-2ivv. The one-meson cut for h(v) can be caicu-
lated exactly in terms of the renormalized pion-
nucleon coupling constant f'. The discontinuity
across the one-meson cut is simply (waif'M/2v)
for -~ ~ v ~ - —,'. M is the nucleon mass in pion
units. This same cut holds for both the singlet
and the triplet s-wave amplitudes. The mixing of
d wave in the triplet state is neglected in this cal-
culation. An approximate calculation of the s-d
mixing has already been reported by one of us
(DYW).' For the construction of a function with
a given branch cut along the negative real axis
and a given branch cut for the inverse function
along the positive real axis, we express h(v) in
the form of a quotient, '

h(v) =N(v)/D(v).

Letting N(v) be analytic except for a branch point
at - —,

' and a pole at v„and D(v) be analytic except
for a branch point at the origin, one can immedi-
ately arrive at the coupled integral equations
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for f'IO, and h(rr)-O(1/v) for f'=0. In the limit
fs =0, the solution of Eqs. (6) and (7) reduces to
the effective-range formula (1). The residue I"

is then trivially related to I', of Eq. (3). For a
coupling constant greater than zero, Eqs. (6) and
(7) can be solved by a straightforward iteration
in ( f'M). The series is uniformly convergent for
( f'M) ~ 1 (the actual radius of convergence may
be greater than 1). In this calculation we use
f'=0.08, (f'M) =0.533; I' and v, are adjusted to
fit two precisely known singlet S P-P phase shifts
at 1.397 and 2.425 Mev, 4 or the deuteron binding
energy and the triplet scattering length. Calcu-
lated v 'cot6 curves are given in Figs. 1 and 2

for the singlet p-p and the triplet n-p, respective-
ly. ' Shape parameters have also been calculated,
and the quadratic approximation

v~2cot6 = - 1/a+ 2r v - Pr v,

0.6

0.4-

0.2

-0.2

-0.4
0

I

0.2
I

0.4
I

0.6
I

0.8 1.0

is plotted on the corresponding figures.
We summarize our results as follows:
(a) Since the effective "interaction pole" re-

places only those branch points at v ~ -1, the
present result should be reasonably reliable up
to v ( 1 (=40 Mev).

(b) Although the power series in v diverges for
I v I

) —,
' because of the one-meson branch point,

our calculated v~'cot5 curve remains quite close
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FIG. 2. Tripletn-P scattering, with a=2. 8, x=1.2
(v)=-2. 0, P=0.028).

to a straight line up to v = 1.
(c) As f' goes from zero to 0.08, v, moves

from -1.8 to -2.0 for the triplet amplitude and
from -1.34 to -2.6 for the singlet p-p amplitude.
The ratio (-I'/v, ), which is an approximate meas-
ure of the effect of the pole, decreases by 14%
for the triplet and 30% for the singlet. These
numerical results point to the fact that the one-
meson force is far from sufficient to give the
required attraction. ' However, the qualitatively
reasonable positions and strengths of these
"interaction poles" have added to our confidence
in replacing unknown branch cuts by such poles.
Also, it indicates that the successive inclusion
of outer branch cuts would make the role of the
phenomenological "interaction pole" less and less
important. A systematic procedure of successive
approximations appears to be quite possible.

We wish to thank Professor Geoffrey F. Chew
for initiating this investigation and for many
enlightening discussions.
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FIG. 1. Singlet P-P scattering, with a=-5.5, r=2. 0
(p~=-2. 6, P=0.073).

Work performed under the auspices of the U. 8.
Atomic Energy Commission.

S. Mandelstam, Phys. Rev. 112, 1344 (1958). Man-
delstaxn has proved his representation through the sixth
order in perturbation theory. J. Bowcock and D.
Walecka (private communication) have proved the fixed-
angle dispersion relation for the Born series of non-
relativistic potential scattering with Yukawa-type poten-
tials. Independently, Blankenbecler, Goldberger, Khuri,
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and Trieman have proved the Mandelstam representa-
tion for the same potential scattering problem to all
orders in the Born series as well as the Fredholm
series (private communication) .
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3This method was suggested by G. F. Chew and S.

Mandelstaxn, Lawrence Radiation Laboratory Report
UCRL-8728, April 1, 1959 (unpublished), in connection
with an analogous problem for pion-pion interaction.

4MacGregor, Moravcsik, and Noyes, University of
California Radiation Laboratory Report UCRL-5582- T;
Knecht, Messelt, Berners, and Ãorthcliffe, Phys. Rev.
114, 550 (1959).

5In making use of the two proton-proton phase shifts,
we have simply assumed that p~2cot6 as calculated from
Eqs. (6) and (7) is to be compared with the usual Cou-
lomb modification

([2nnqcotd/exp(2m} —1] + 2~(q}); p =et/}tv.

~Cini, Fubini, and Stanghellini; W. Alles and A.
Tomasini; and S. Matsuyama (private communication)
have made separate attempts to determine the coupling
constant from dispersion relations using observed s-
wave parameters. It is clear that at least three param-
eters are needed for a reliable determination of the
coupling constant. It seems to us that our present
knowledge of the s wave is inadequate to give such a
three-parameter set. However (Fubini and Stanghellini,
private communication) if one assumes the value of
f known, the formulas for qcot6 and its derivative as
given by Cini, Fubini, and Stanghellini evaluated at
q = —1/2 imply a positive shape parameter and a So
phase shift of -48' at 40 Mev, as do our formulas.
Preliminary results indicate that experiment may sup-
port this conclusion [MacGregor, Moravcsik and Noyes,
University of California Radiation Laboratory Report-
UCRL-5582- T (unpublished}] .

ERRATUM

EVIDENCE FOR ANISOTROPY OF THE SUPER-
CONDUCTING ENERGY GAP FROM ULTRA-
SONIC ATTENUATION. R. %. Morse, T. Olsen,
and J. D. Gavenda [Phys. Rev. Letters 3, 15
(1959)].

Measurements reported in this paper for pro-
pagation along the [100]direction have been

found to be erroneously labelled. Actually these
data were taken for a direction of propagation
which was perpendicular to [001] and 18' from
[100]. From subsequent measurements along
[100]one estimates the limiting energy gap to be
(3.5 + 0.1)k T& for this direction.
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