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The purpose of this note is to propose a varia-
tional principle for geometrodynamics, to derive
from it certain of the field equations, and to re-
late the problem of obtaining the remaining field
equations to the problem of finding a superpoten-
tial for the metric tensor.

Misner and Wheeler, ' following Rainich, ' have
shown that the content of general relativity and
classical source-free electromagnetism can be
fully expressed in terms of quantities depending
only on the metric tensor g of a Riemannian
space. In their formulation the field equations,
fully equivalent to the usual ones, are
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For some purposes it is useful to replace the
10+1=11 equations (1) and (2) by the equivalent
10 equations:

with the value of the Ricci curvature tensor at
the point, completely determine the electromag-
netic field f, and hence also the stress-energy
tensor,

Q 67'

at that point.
The algebraic equations (1)-(3) satisfied by the

Ricci curvature express the two-way connection
between the electromagnetic field tensor f&„and
the Ricci tensor R . Thus, any electromagnetic
field tensor f„„produces a Ricci curvature R
that satisfies (l)-($). Conversely, given an R
that satisfies (1)-(8), we can solve for f&„, the
solution being uniquely determined except for n.
The curl condition (4) subsequently determines n
up to an additive constant ao.

It is often very helpful to have a variational
formulation of a set of field equations.

Such a formulation is well knowns~ ~ in the more
familiar version of general relativity plus electro-
magnetism, where the f» are treated as foreign
objects immersed in the metric space rather than
expressed-as above in Eqs. (1)-(5)—directly in
purely geometric terms.

In the traditional version of general relativity
plus electromagnetism, the coupled field equa-
tions are
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The identity of (6) to (1) and (2) may be seen by
setting p, = v and summing. The factor -~ could
just as well have any other constant value-hence
the quotes.

By way of explanation it may be recalled that
the curl condition (4) guarantees the existence of
a scalar,

5I=O, I= Zdv, d7 =cfÃ 6 dx, (12)

with

=o.
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The variational formulation of these equations
has the form

a(s)= a dx +a„

the "complexion" of the electromagnetic field. If
n = nw (n = 0, 1,2, ...), we have a pure electric
field; if n = —,'nw (n =1,3, ...), the field is pure
magnetic. The complexion at a point, together

2 = (Lagrangian density for the gravitational field)
+ (Lagrangian density for electromag-

netic field) (13)

=R(-g) +-.'(-g)"f, f". (14)

The usual procedure to obtain the field equa-
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X
pxcos2 a dz (16)

The first term i.s, as before, the Lagrangian
density for the gravitational field. Likewise, the
second term is an expression for the Lagrangian
density Em -B for the electromagnetic field, ex-
pressed in purely geometrical form. This ex-
pression can be derived from results in Misner
and Wheeler. '

We see that our Lagrangian density is a func-
tional of the metric tensor g&" and its derivatives
up to the second order, and of the path of integra-
tion v occurring in the definition of a(x), Eq. (7).

We require that I= JZdv be stationary with res-
pect to arbitrary variations of both the path g and
gpv

We first vary with respect to z. 5+=0 results
in the condition that the integral

be independent of the path from 0 to s. This will
be true if the integrand ap has a vanishing curl:

pI& &Ip
(4)

This is one of the equations we seek. We may
now write 2 in a slightly simpler form:

Z=B(-g)"'--,'(R R" )"' cos2a.
pp

(18)

With no loss of generality we can set a(z) =0 at
the point of variation, since this amounts to
nothing more than choosing a convenient origin of
coordinates. Note, however, that this does not
imply that 5a = 0, although 5(cos2a) = 0.

At this point it would seem natural (1) to vary
Eq. (18) with respect to g&", (2) to integrate by

tions from the above is to require (for detail, see
references 2 and 4):

(a) The existence of a vector 4-potential for

p p'
p, p

p le

(b) f „(or y&) and g""are treated as the quan-
tities to be varied;

(c) 5q and 5g&" are both to vanish on the sur-
face 0 bounding v.

We propose for geometrodynamics the Lag-
rangian density

Z =Z(-g)~ - —,'(-g)'a(g B"")'*
p. p

parts terms containing derivatives of 5g"", and
(8) to set equal to zero the resulting coefficient
of 5g». The field equations obtained in this way
are not satisfactory; they are not equivalent to
the desired and expected Eq. (6).

It seems reasonable to attribute this difficulty
to a wrong choice of the quantities to hold fixed
on the surface, not to a wrong choice of quanti-
ties to be varied.

This is not the first time that such a problem
has arisen, as witness the variational principle:

5 ~(E'-B')d(vol)=5 (-g)~f p" g" f dv=0,

(19)

for electromagnetism gone in a space with pre-
scribed metric g „.

The most primitive analysfs of this variational
principle, based on the assumption that the f&„
are the quantities to be varied, and that the varia-
tions off „vanish at the boundaries, leads to
the incorrect result that f»-0 throughout the
interior.

The customary procedure is to add a supple-
mentary condition, Eq. (15), and treat the p& as
the quantities to be varied, and hold them fixed
on the boundary.

By setting the coefficient of 5q equal to zero,
we obtain four of Mwcwell's equaPions. The other
four were assumed from the outside, Eq. .(15).

However, there is still a third approach, ' 9

due to Finzi, whereby one can obtain all eight of
Maxwell's equations without the addition of such
a subsidiary condition from outside.

Finzi begins by observing that any antisym-
metric tensor f&„can be expressed in the form

( g)~tu ~a-P]g" g B
[alP] (20)

where A and Bz are 4-vectors. We now vary
the action integral with respect to both A& and
B, subject to the condition that they both be
fixed on the boundary. The demand that the ac-
tion be stationary immediately produces all eight
of Mmmrell's equations.

Judging by the analogy between the f as field
variables in electromagnetism and the g&" as
field variables in gravitation, we expect that
there are alternative ways to vary arbitrarily the
field variables within a space-time region. The
ways differ from each other in the choice of quan-
tities kept fixed on the 3-surface bounding this
region.
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It was wrong in electromagnetism to think of
the f&& as fixed on the surface. It appears
equally wrong in geometrodynamics to think of
the g&" as fixed on the surface.

In electromagnetism we know the potentials
which should be fixed on the surface. In geo-
metrodynamics we do not yet know these poten-
tials.

Therefore, we regard the problem ahead as
not to change the variational principle Eq. (16),
which is so plausible on physical grounds, but
rather to find the right superpotential in terms
of which to express the g».

In discussions (1) of the quantization of general
relativity and (2) of the "true variables" of gen-
eral relativity, the hope has often been expressed
to find these superpotentials. We now have a
third and perhaps even stronger motive to con-
struct these quantities: to validate —if possible-
a variational principle which, for the first time,
summarizes in purely geometrical terms the
whole content of classical source-free electro-

magnetism and general relativity.
I am deeply grateful to Professor D. C. Spen-

cer, and especially to Professor J. A. Wheeler,
for many long and helpful discussions on this
problem.
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The question of the intrinsic parities of the
strange particles has been extensively discussed
in the past. The aim of this note is to point out
two possible experiments that may shed light on
this matter.

We first consider the capture reaction

K +d Y+N.

It has been recently suggested that the capture
of K in liquid hydrogen and deuterium occurs
predominantly from bound s states. ' In this note
we shall consider that statement as a working
hypothesis and shall derive a theorem that may be
used to obtain information regarding the parity
of the K meson relative to the YN system. With
the assumption that K capture occurs predomi-
nantly from s states (bound or from the continuum)
relative to the center of mass of the deuteron, the
most general form of the transformation matrix
in spin space is

and

M= [co, %+do, 4]T for pseudoscalar E, (2b)

where jt is a unit vector along the direction of the
relative momentum of the final system and T is
the triplet projection operator. The operator T
simply describes the spin correlation of the ini-
tial state. We also note that the other possible
invariants a, o,T and e, ~ (jtxo,)T can be reduced
to the general forms given in Eqs. (2a) and (2b),
respectively.

We now evaluate the correlation between the
components of the spine of the Y and N along a
direction n, perpendicular to R:

&oxn&sn& = »Ptfz«in&an]/Tr[ltfI)f ~]. (2)

Inserting expressions (2a) and (2b) into (2), we
obtain

(&xnsn) = la - 5 I'/[I a+ & I'+2(la I'+ ) 5 I*)]-0, (4a)

M= [a+'b(&, ~)(os R)]T for scalar K, (2a) (&,n&sn) = - Ic - dI'/[Ic+dI'+2(Ic I'+ Idl')] (0, (4b)


