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spectrum for an imperfect Bose gas, namely"

p' &', ( I ', sin(pa/I) '"
2m) I,ma pu/&

where A is a monotonically increasing function of
the density of the system and is determined by
the implicit x'elatlonslHp

4g pg %sin x
m 0 x +Asia

and expresses it in the form (1), one obtains

c=(-,'A)'"I/ma, ) =rr(g/I)'(1-8/A) ~

At low densities, where A ~8wpa'/m «1, one ob-
tains the Bogoliubov expx'esslons

c =(4spa&'/m')'I', y ~ —m/82vpak'.

Equations (12)-(14)display the same qualitative
trend for yas the empirical values do. Of course,
the density at which the zero of y occurs is much
smaller than the one encountered in liquid heli-
um nevertheless, the appearance of a y which is
negative at low densities and becomes positive at
higher densities is strongly suggestive of the pos-
sibibty that an improved theory of elementary ex-
citations in a Bose liquid may explain the ob-
served behavior of y quantitatively as mell.
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The phase diagram of a charged Bose gas is dravm. We discuss the domains of ex-
istence of the solid, Quid, and superQuid phases. It is predicted that superdense helium
can be superfluid at densities higher than 10~ g/cm~.

The purpose of this note is to dram the phase
diagram of a system of charged bosons of mass
m and charge e; embedded in a uniform back-
ground of opposite charge which ensures overall
electrical neutrality. This model might be of
astrophysical interest. ' In a white dmarf or in
the outer layexs of a neutron star, the atoms are
pressure ionized, and the electrons form a very
inert uniform Fermi seay lf the nuclei ax'e bo-
sons, as it is the case for instance for helium,

me do have a charged Bose gas in a unifoxm back-
ground. The density-temperature diagram that
me obtain is drawn in Fig. 1, and miII nom be ex-
plained.

When classical statistical mechanics applies,
there are tmo possible phases, fIuid and solid.
A simple dimensional argument' says that the
transition between these phases occurs when the
thermal enexgy kT is some mell-defined fraction
I' ' of a characteristic Coulomb energy e /r (F
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ing the energies of the fluid and solid phases,
both obtained by variational calculations.

For describing the fluid (which is actually a
superfluid as will be shown below), we use a
Bijl-Jastrow trial wave function,

e(r„r„.. ., r„)=expl ——,
' Q u(lr, —r, l)], (2)

.5
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FIG. 1. Phase diagram of the charged Bose gas in

the density-temperature plane. The inverse ionic
sphere radius r ~= {4m/3) ~~p~~, in units of (10 ao) '

(ao is the ionic Bohr radius), is drawn versus ZT, in
units of 10 5 ionic Hy. The solid curves separate the
solid, Quid, and superQuid regions, The straight
dashed line represents what the melting line would be
if there were no quantum effects [Eq. {1)] .

and choose for u(x) a simple form suggested by
the theory of plasma oscillations. In terms of
the collective coordinates

N

p-„= +exp( —ik r, ),

an approximate Hamiltonian, which describes
the plasma oscillations in a volume Q, is

(4)k. (I pkl'+~'I pr, l'),20 ~„op&2

where ~ = (4se'p/m)'~' is the plasma frequency;
the term k=0 is excluded since the average den-
sity is a fixed quantity. The ground state of IJ is

is a characteristic interparticle distance related
to the number density p by p =3/4nr'). It is easy
to check that, along the melting line

p = (3/4n)(ikT/e')',

2Q p„o@pk j '

which is of the form (2) with

(5)

if p and T are small enough, the de Broglie wave-
length (2w8'/mkT)'~' is negligible with respect
to F; therefore, classical statistical mechanics
does apply, and the melting line actually follows
(1) in the lower left region of the phase diagram.
The constant I has been evaluated by computer
experiments'4 and in the following we shall adopt
the value 1 =140 of Ref. 4. Although the transi-
tion is likely to be of first order, its width has
been estimated to be extremely small, 4 and will
henceforth be neglected.

If we go to higher densities, quantum effects
become important. The state of the system de-
pends on p only through the dimensionless vari-
able r, =F/a, (a, is the ionic Bohr radius k'/mern;

for helium nuclei, ao= 1.80&& 10 's cm). It is con-
venient to express all energies and temperatures
in ionic rydbergs (R= me'/2h' (for helium nuclei,
61 corresponds to a temperature of 1.85&& 10"'K).
Let us first consider the zero-temperature case.
As the density increases, the zero-point vibra-
ti.ons of the solid become more and more impor-
tant, and ultimately the solid melts' (the system
approaches an ideal Bose gas as the density goes
to infinity and r, goes to zero'). The density at
which this "pressure melting" occurs, at zero
temperature, will now be estimated by compar-

a 4m
u(~) = —Z —,e'"' ',

Op„ok

a = m(u/2vhp = (me'/w5'p)'~'.

In the limit of an infinite system, u(r) would just
be a/r; since this is a long-ranged function,
some care has to be exercised, and the infinite-
system limit should not be taken too early. Since
(4) is only an approximate Hamiltonian, we do

not fix a at the value given by (7). Rather, from
now on, we shall consider (2) and (8) as a rea-
sonable trial wave function, where a is an ad-
justable parameter which is to be determined by
minimizing the expectation value of the exact
Hamiltonian. Through standard manipulations,
the kinetic energy expectation value is easily
shown to be

The evaluation of the potential-energy expecta-
tion value requires no new numerical calcula-
tions, because if (5) is used, IC I' is the classi-
cal statistical-mechanical distr ibution function
of a system of charged particles of charge e', at
a temperature T, such that e "/kT =a (of course
e' has nothing to do with the actual charge e of
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the bosons). Therefore, the expectation value of
the potential energy is simply related to the av-
erage potential energy U, of this classical charged
gasq

the nice feature is that U, has already been tab-
ulated in former computer experimentss'~ on the
classical gas. ' Minimizing the total energy (8)
plus (9) with respect to a provides the energy of
the Quid as a function of ~, . In the range 30 & ~,
&400, the best a varies from a value of the order
of that given by (7) to a value about 50% higher.

To describe the solid, we use a product of one-
particle Gaussian wave-functions centered on the
sites of a bcc lattice. Minimizing the energy
with respect to the Gaussian width parameter
gives for this energy E a value praetieally equal
to the Einstein harmonic-solid result

Z = - I 792/.r, +3/r, '",
where the energy is in rydbergs.

%6 find that the Quid and solid energies as func-
tions of x, intersect at ~, =360, or equivalently
p =5.1&10 eao '; this value p is the melting
density at zero temperature. At this point,
E = —4.5&&10 3 Ry and @=29m,ao. The uncertain-
ty lD this melting density ls har d to estimate
since both the fluid and solid energies are varia-
tional results and lie very close to each other
over a wide range of values of r, . Two remarks
ean be made concerning the error introduced by
the variational method: First, in the fluid phase,
a comparison ean be made wit a previous varla-
tional calculation, ' which used a two-parameter
trial wave function more general than (8). Our
energies lie above those of Ref. 9, as they should,
but the relative energy gained by introducing the
second parameter decreases from 259O at r, = 1
to 10% at r, = 20 and is likely to become very
small ln the transition region (r 400). The
second remark concerns the solid phase: There,
an alternative to the use of the Hartx ee variation-
Rl Dlethod ls the use of quasiharmonic theory
which yleMs the following ground stRte eDergy
per particle:

Although, in the transition region, (11) and (10)
are quite close, the sensitivity of the location of
the transition density to the approximation used
is such that, if (11) is used instead of (10), the
melting value becomes r, = 120 instead of 360.

Since (11) is not necessarily an upper bound to
the exact ground-state energy, whereas (10) is,
we feel that it is somewhat more consistent: to
look for the intersection of the variational energy
curve of the fluid phase with the variational ener-
gy (10) of the solid phase.

%6 have thus far obtained estimates of the melt-
ing density in the two extreme eases: the purely
classical (low p, low T) region and the purely
quantum (T= 0) region. In order to interpolate
the melting line in the intermediate region, we
make the following two approximations: (a) We
assume the vRIldlty of LlndeD1RDQ s melting
criterion, which states that a solid melts when-
ever the rms displacement of particles from
their equilibrium (i.e., lattice) positions reaches
a certain fraction y, independent of density and
temperature, of the nearest-neighbor distance
d [d'=3(n/3)2~'r, 'a, ' in the case of a bcc latticej;
(b) in order to calculate y at each density and
temperature, we use quasiharmonic theory. A
justification for approximation (a) is the fact that,
in the two extreme regions, the values of y at
melting are reasonably close. At T=0, for x,
=360, the quasiharmonic theory yields @=0.2,
whereas in the classical region, for I'= 140,
an "exact" Monte Carlo calculation' yields
'r =0.18. As 'to approximation (b)q its use is justi-
fied, at. least in part, by the fact that, in the
classical case, at melting (I'= 140) the quasihar-
monic theory" yields a value @=0.17 very close
to the "exact" value 0.18. The constant value of
y which we finally choose to determine the whole
melting line is the value y = 0.1V, yielded by
quasiharmonic theory at meIting in the classical
limit; as a consequence of this choice, the zero-
temperature melting density is shifted to x, = 670.

Actually, we found it more convenient to re-
place the exact harmonic spectrum by a much
simpler, isotropic, Debye-like spectrum which
yields exact first, second, and fourth moments
of the frequency distribution function. " This
spectrum, which will be discussed in more de-
tail elsewhere, greatly simplifies the computa-
tloIl of J Rs R function of p Rnd T, while yleldlIlg
thermodynamic properties in excellent agree-
ment with those obtained using the full harmonic
spectrum.

The melting line, obtained by drawing the locus
of points in the (p, T) plane for which y(p, T)
=0.17, is shown in Fig. 1. The temperature be-
yond which no solid ean exist, because the Linde-
mann ratio is always larger than the melting val-
ue 0.17, is 0.83X10 ' Ry (ionic), which corre-
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sponds to 2400AZ 'K for nuclei of atomic mass
A and atomic number Z. This maximum temper-
ature is relatively sensitive to the value chosen
for the critical Lindemann ratio. If the value
@=0.2, which was found for the T= 0 transition,
were chosen, a maximum temperature 1.96~10 '
Ry would result.

It should be noted that a "closed" melting line
of the type described here had already been pro-
posed by Kirzhnits, ' whose calculation was based
on a crude Einstein oscillator model and the as-
sumption that melting occurs whenever the ratio
of potential energy over kinetic energy is of
ordep 1. However, this criterion is too crude a
picture for a charged Bose gas because the pre-
vious ratio is actually much larger (of order I'),
which explains why Kirzhnits's numerical pre-
dictions differ by several orders of magnitude
from the present ones.

Finally, there must be a transition line between
fluid and superfluid phases, since the system
must be an ordinary fluid under classical condi-
tions (i.e., when the temperature is high enough
for a given density) and a superfluid at low tem-
perature and high density'; incidentally, our
trial Bijl-Jastrow wave function necessarily de-
scribes a superfluid. " The precise location of
the fluid-superfluid transition line will require
further work. Here, we have used the free-Bose-
gas approximation p =2.612(mkT/2mb )s~'. It can
be guessed that the Coulomb interactions will not
drastically displace the transition line (note that
the strong interactions which exist in ordinary
helium do not prevent the X transition tempera-
ture from being of the same order of magnitude
as the free —Bose-gas condensation temperature).
The fluid-superfluid transition line intersects
the melting line at a triple point, the coordinates
of which are r, '=1.4&10, kT=0.5&10 ' Ry.

In the case of helium nuclei, the maximum

temperature at which the solid exists is 150000'K.
The triple point lies at p, = G. 75 x 10' g/cm' and
T, =90000'K, and the zero-temperature melting
density is p =0.92&&10' g/cm'. Therefore, the
domain of the superfluid phase extends to lower
densities than it had previously been estimated. '4
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