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the same model which was developed to explain
the static properties. The ve1ocity component
perpendicular to the applied field gradient fol-
lows naturally from the Landau-Lifshitz-Gilbert
equation of motion without the introduction of
any arbitrary assumptions. The dependence of
the bubble velocity components on the drive field
is correctly explained qualitatively by the intro-
duction of the f factor, but a quantitative com-
parison with experiment must await a detaiIed
derivation of the dependence of f on the drive
field.
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Certain magnetic domain walls in a garnet film show a much reduced mobility from
that of normal domain walls in the film and are interpreted to contain vert;ical Bloch
lines. Theory shows that forward wall motion involves sideways propagation of Bloch
lines and that in the high Bloch-line density limit, the mobility for small u is reduced to
n of the conventional value, where Q. is the Gilbert damping parameter.

Until recently the theory of ferromagnetic or
ferrimagnetic domain wall motion in a constant
field has been confined to the case of a uniform
Bloch wall propagating in an infinite medium, It
has therefore involved only one-dimensional solu-
tions of the Landau-Lifshitz equation. In this
case, Doring' has shown that the velocity of the
wall is governed by the precession of the magneti-
zation within the wall width about the demagnetiz-
ing field of the wall, and Walker' has calculated
an upper limit of this velocity. More recently,
the theory has been extended by Slonczewski'4
and by Schlomann' to cases of thin films where
two-dimensional solutions are required because
surface stray fields vary along the thickness of
the film. In one of these cases, interacting of a
horizontal (parallel to film plane) Bloch line with
the stray field was invoked to account for critical-
velocity observations of Argyle, Slonczewski, and
Mayadas.

In this paper we consider a new kind of wall mo-
tion involving the propagation of Bloch lines. We
have studied such effects experimentally in garnet
films with anomalous cylinder (bubble) and stripe

domains. The static behavior of these domains
has been interpreted in a previous paper' (I), and
also by Tabor et al. ,

' in terms of vertical (paral-
lel to easy axis) Bloch lines interacting along the
perimeter of the domain. We will argue that the
mobility of such walls is a two-dimensional prob-
lem, involving forward propagation of the wall
and sideways propagation of Bloch lines. ' How-

ever, in contrast to the earlier studies in films, '"'
the surface of the specimen plays no essential
role in the dynamic phenomenon, which shouM
therefore occur as mell in a bulk specimen, given
the initial presence of Bloch lines.

In I, a garnet film 7 p,m thick and of comp.osi-
tion (Yb, »Eu, 65Y»)(oa, ,Fe»)O» was shown to
sustain classes of bubbles and stripes with dif-
ferent characteristic dependences of dimensions
on field and different characteristic collapse
fields. We chose to study the mobility of the bub-
bles with the highest collapse field (132 Oe in
Fig. 2 of I) because we could easily differentiate
them from other bubbles by lifting the bias field
to just under this collapse field and thus eliminat-
ing all other bubbles and stripes. We measured
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FIG, 1. Reciprocal collapse time, in units of recipro-
cal microseconds, versus pulsed field in oersteds for
two types of bubbles in the garnet film described in 1.
The upper two curves are for normal bubbles a.nd the
lower four for bubbles collapsing statically at the high-
est field value, as shown in Fig. 2 of I. In both cases,
curves are shown for several different starting diame-
ters d, as controlled by varying the bias field.

the time T of a pulsed field required to collapse
the bubbles as a function of the field strength H

and initial diameter d.' The results are shown
in Fig. 1 along with those for "normal" bubble,
which, as argued in I, presumably contain no
Bloch lines.

The results for th'e normal bubbles are typical
of low-damping garnet films, indicating a high
initial mobility and showing a velocity saturation
of the type studied previously. 4 Since the initial
mobility is higher than can be measured by bub-
ble collapse, it was measured instead by a photo-
metric technique as described by Seitchik, Doyle,
and Goldbexg, ' but with greater time resolution. "
A mobility of 3000 cm/sec Oe and a Gilbert damp-
ing parameter o. = 0.02 was extracted from the
decay of the underdamped oscillations of stripe
domains in response to a pulse field.

The results of Fig. 1 for the bubbles with Bloch
lines show dramatically longer collapse times as
compared to the normal bubbles. To interpret
these data properly, we should extend the dynam-
ic collapse theory of Callen and Josephs" to in-
clude the Bloch-line exchange energy described
in I; this is complicated by the interplay of ellip-
hc and radial instability. So, as a first approxi-
mation, we calculate the average wall velocity
from (d- d, )/2T, where the collapse diameter d,
is taken to be the static collapse diameter 1.5

y = ya, + 2''"SC"'M '(8'q/Sx') —o.a 'q, (4)

where the dot means the derivative with respect
to t. The first of these equations expresses the
proportionality of wall velocity to the torque per

p,m, as found in Fig. 2 of I. The nonlinear parts
of the lower four curves in Fig. 1 are attributable
to bubble potential effects and the linear parts,
extrapolating roughly through zero, give a mobili-
ty of 1.3 cm/sec Oe, consistently within + 50%
for all d.

The mobility of the normal domain walls, which
we assume contain no Bloch lines, can be under-
stood in terms of either of the equivalent conven-
tional formulas

@=yea =-~y A.

where 4=(A/K)"' is the Bloch-wall thickness, A.

the exchange stiffness, K the uniaxial anisotropy,
y the gyxomagnetic ratio, and I the spontaneous
magnetization, The damping can be expressed
either in terms of the Gilbert parameter o. or the
Landau-Lifshitz parametex A.. If we assume that
the damping coefficinet A, /y' scales linearly with
composition, then we may estimate its value
from mobility determinations in other composi-
tions. Consulting the table of Vella-Coleiro,
Smith, and Van Uitert, "we find the value A/y'
-6x10 'Oe sec. WithA=3x10 'erg/cm, &
=10 erg/cm', and M =16 6, we predict a mobili-
ty of 1500, in reasonable accord with the expexi-
mental value for the normal domain walls.

In order to explain the effect of Bloch 1ines, we
consider a domain mall with Bloch lines lying
straight along the z axis; x is the distance per-
pendicular to s along the (possibly curved) wall.
One dynamical variable is the normal wall dis-
placement q(x, t). The second dynamical variable
is the angle g(x, f) between the x axis and the wall-
surface magnetization of magnitude &~ lying in
the xq plane. The Bloch li.nes may be represented
by a g varying monotonicaiiy with x, provided that
all the Bloch lines have the same handedness. To
apply this model to a bubble of circumference C
and 81och-line number n, which is even and of
either sign, we ignore the change in circumfer-
ence with time and set the boundary condition

g(x+C, f) = y(x, t)+mn.

The Landau-Lifshitz-Gilbert equation reduces
to the following coupled equations for high-Q (=E/-
2&M') materials":

q = 2&y~sin2$ —2ybAM '(8'g/ex') + o, gp, (3)
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unit area acting on g in which the essential terms
are from mall demagnetization, Bloch-line ex-
change energy, and viscous damping, respective-
ly. Stray fields emanating from surface poles,
which are important to the problem of horizontal
Bloch-line motion, "are neglected here. The
second equation shows that the precession rate of
g is proportional to the pressure on the wall, to
which the essential contributions are from the
applied field, surface tension, and damping, re-
spectively.

The steady-state solution of Eqs. (3) and (4),
for a small constant applied field B„depends on
the value of n in the boundary condition (2). For
the simple case n = 0, neither g nor j depends on
x or t. Thus, according to Eq. (3), the velocity
is imparted entirely by the demagnetizing torque.
Moreover, in this case Eq. (4) reduces to the mo-
bility relation q = pt1, with p given by (1), in
agreement with previous theory. However, in the
case of large Bloch-line density In I/C, the large
exchange energy dominates the magnetostatic en-
ergy. Thus, neglecting the magnetostatic torque,
we find the solutions'

g=~nC '+ya, (1+n') 't, (5)

j= pB, =b.y(n+n ') 'a, .
We can check that the demagnetizing torque con-
tributes nothing to the time average of q in first
order by substituting (5) in (3) and integrating
with respect to t. Equations (1) and (6) coincide
with the upper and lower bounds, respectively,
on the mobility as predicted from conservation of
energy. '

Equation (5) can be interpreted as a sideways
propagation of the Bloch lines at velocity yH, C/
sm(1+ n') The di.rection of propagation depends
on the handedness of the Bloch lines, since the
sign of the velocity depends on the sign of n. Al-
though such propagation has not been seen direct-
ly, it may account for the remarkable phenome-
non of stripe rotation which has been seen recent-
ly in several laboratories. " When the ~ field sup-
porting an anomalous stripe domain of the type
described in I is changed or pulsed, the stripe is
observed to rotate in the plane. Some stripes ro-
tate clockwise, others anticlockwise, for a given
field sense. This rotation may be attributed to
coupling between the long axis of the stripe and
the circulation of Bloch lines around the perime-
ter. A more quantitative study of this phenome-
non is in progress.

Equations (1) and (6) predict a reduction in mo-

bility for bubbles containing many Bloch lines by
a factor of n' for low-loss (n «1) bubbles. From
the experimental normal-wall mobility of 3000
cm/sec Oe and damping coefficient of u =0.02, we
predict a Bloch-line-bubble mobility of 1.2 cm/
sec Oe, which is fortuitously close to the mea-
sured value of 1.3 cm/sec Oe, considering the
20-50~0 error bars which must be placed on all
the above experimental values.

A more detailed theory considers both demag-
netizing and exchange torque consistently. In the
limit of well-separated Bloch lines, one finds the
initial mobility'

p=y~/(n+s'AIs I/2Cu), (7)

where A =(A/2m)' 'M ' is the characteristic Bloch-
line thickness in analogy with the Bloch-wall
thickness 4. This result resembles (6); yet for
vanishing Bloch-line density [n [/C, it reduces to
the conventional Eq. (1). We have not determined
the precise number of Bloch lines in our low-mo-
bility bubble. The quantization of static charac-
teristics shown in Fig. 2 of Ref. 6 indicates at
least four Bloch lines, but there could easily be
a few more since it is not known how many Bloch
lines it takes before the static diameter of a bub-
ble is measurably affected. On the other hand,
the good agreement of (6) with experiment and
the approximate independence of mobility on start-
ing bubble diameter indicate that the assumptions
of (6) are fulfilled, namely, that the demagnetiz-
ing energy 2m'M'hd is indeed less than the Bloch-
line exchange energy 2n'mAA/d, which implies n
~20 for our sample. We have also assumed that
the wall thickness b, =(A/K)'~' is independent of
Bloch-line density; this is true as long as the
usual Bloch-wall energy 4(AK)'~' is greater than
the Bloch-line exchange energy, that is, as long
as e &100, which appears to be the case.
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The difference between the polarization and the analyzing power in the inelastic scatter-
ing of protons at isobaric analog resonances in Y has been determined by measuring the
spin-Qip probability of a polarized beam, The differences are large, and are sensitive
to the structure of the resonances.

In a recent Letter' it was suggested that spin-
Qip measurements with a polarized incident pro-
ton beam be used to determine the difference be-
tween the polarization (p,) and the analyzing pow-
er (A,) for inelastic scattering at isobaric analog
resonances (IAR's). Here we present the first
results of such measurements.

The defining equations for the differential cross
section do/dQ, p„A„ the spin-flip probability
8, and the spin-flip asymmetry 48 are as follows:

do(8)/dn=-', (o"+o' +o '+o )=-~o(8),

p,(8)o(8)=o"+o '-o' -o
A, (8)o(8) = o"+ o' —o

S(8)o(8)=o' +o ',

~S(8)o(8)=o' —o '= —,'(A, -P,)o(8).

The z axis is chosen along the direction k;„xk,„„
where k,„and k,„, are the incident and outgoing
proton directions. ' Then o' (8), for instance, is
the partial differential cross section for scatter-
ing from a state with incident proton spin in the

positive z direction to a final state with outgoing
proton spin in the negative z direction. Only four
of the five quantities defined above are indepen-
dent, since there are only four incoherent partial
cross sections. For elastic scattering, time-
reversal invariance requires that P, and A, be
equal. No such requirement exists for inelastic
scattering, but until now there has been little ex-
perimental evidence for a difference between P,
and A, .' Differences occur if the cross section
for spin fbp from + to —is different from the
cross section for spin flip from —to +.

In the present experiment we have measured
A, (8), S(8), and ES(8)/S(8) for inelastic scatter-
ing to the 1.84-MeV 2, ' state of "Sr at three
resonances: those at 7.00 MeV (s"), 7.08 MeV
(—,"), and 7.53 MeV (-,") incident proton energy.
The differential cross sections had been mea-
sured previously' for the two lower-energy reso-
nances, and we measured that for the 7.53-MeV
resonance. Our measurements were performed
using the polarized proton beams' of the tandem
Van de Graaff accelerators at both Rutgers Uni-


