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Dynamic Properties of "Hard" Magnetic Bubbles
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A theory is developed to explain the anomalous dynamic behavior of a new type of cyl-
indrica1 magnetic domain called a hard bubble. This theory, which is based on the Lan-
dau-Lifshitz-Gilbert equation of motion, is able to explain satisfactori1y aH the salient
features of the motion of hard bubbles.

A new type of cylindrical magnetic domain,
called a hard bubble, has recently been described
by Tabor et aE. ' The static properties of these
bubbles can be explained in terms of a model2 in
which the wall of the bubble is assumed to have
several Bloch-to-Noel transitions (Bloch lines).
In this paper we consider the implications of
this model with regard to the dynamic behavior
of hard bubbles. The salient features of the dy-
namics of hard bubbles are the following":
(a) Hard bubbles have a component of velocity
V~ perpendicular to an applied magnetic field
gradient as weQ as a component V~I parallel to
the field gradient; (b) the ratio V jV~~ becomes
large at large values of the drive field; (c) the
ratio of V~~ to the drive field becomes very small
at large values of the drive field. All these fea-
tures are explained satisfactorily by the theory
developed here.

We consider first a planar 180' wall which con-
tains closely spaced Bloch lines as shown in
Fig. 1, where the wall lies in the y-z plane
(0 ~ 8- m). We adopt the linear model of Rosen-
cwaig, Tabor, and Nelson, ' where the angle P is
assumed to be a linear function of y for the sta-
tionary wa11. However, for a wall in motion the
spin configuration is not necessarily linear. In
either case, for closely spaced Bloch lines the
additional wall energy density consists mainly
of the exchange energy A(8$/By)' (A is the ex-
change constant), and so we ignore all other con-
tributions. Thus, the only significant 0 com-
ponent of the torque acting on the spins is the
exchange torque —2AS'p/bya.

The Landau-Lifshitz-Gilbert equation of motion
of the spine can be written in component form
as follows':

48=- T,y/I- asin8WI',

g sin8= —T~y/I+ o.5,
where Te and T& are the 8 and g components of
the torque, respectively, y (&0) is the gyromag-
netic ratio, M is the saturation magnetization,

and e is the damping constant. 8 and g can be
written in terms of the x and y components of
the mall velocity, e„and v„, as folloms:

8 =v„88/sx, g=v, 8$/sy,

where we have set 88/&y =&g/Sr=0 for a wall
moving with constant velocity. Since Eqs. (1)
and (2) are valid at every point in the wali, the
wall velocity can be obtained by solving these
equations at some point in the wall without loss
of generality. It is convenient to solve the equa-
tions at the wall center (8= v/2) where we have

where the first equation serves as a definition of
the dynamic wall width E, and IJ is an external
magnetic field in the —z direction. gn the follow-
ing we shall ignore the difference between the
dynamic and static mall widths since this differ-
ence is small at small velocities. ) Hence, Eqs.
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FIG. 1. The coordinate system used to describe a
planar 180 wall with Bloch lines. The wall lies in the
y-s plane and 0-8-~.
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where p = iB$/By I/2w is the number of Bloch
lines per unit wall length (a Bloch line involves
s, spin rotation of 2n rad) and the plus or minus
sign stands for clockwise or counterclockwise
rotation of the spin direction through the Bloch
line. It is thus evident that the Bloch lines have
a tangential component of velocity as well as a
perpendicular component. This fact can be seen
pictorially by following the path of the center of
a Bloch line as shown in Fig. 1. The direction
of the tangential component of velocity depends
on the direction of rotation of the spin direction
in the Bloch line. It is also to be noted that the
mobility p, „normal to the wall given by Eq. (5)
differs from the mobility of a normal wall by the
factor n'/(1+ o.'). For low damping materials
n «1, and the wall with Bloch lines has a much
smaller mobility than a normal wall.

In the model of Rosencwaig, Tabor, and Nel-
son, ' the wall of a hard bubble is assumed to be
of the type discussed above. Hence, when a field
gradient Ij = H, sing is applied to a hard bubble,
the torque acting on the spins produces an in-
crease in the density of Bloch lines on one side
of the bubble and a reduction on the other side,
the total number of Bloch lines remaining un-
changed (see Fig. 2). Thus Bmg/Bym is no longer
equal to zero. To estimate the effect of B'g/By'
t 0 let us first consider the case where the wall
is constrained to move with v, =0, i.e., the
Bloch lines are prevented from having a tangen-
tial component of velocity. In this case the solu-
tion of Eqs. (3) and (4) becomes

For the stationary wall (P;= 0) we have assumed
B'g/By'=0. When PWO, B'g/By~ is still zero if
the spins are free to precess, as shown in Fig. 1.
In this case we can solve Eqs. (3) and (4) to ob-
tain'

H=O H = HpSIN q

FIG. 2. Distribution of Bloch lines in a hard bubble
with and without an applied magnetic field gradient.
The radial bars represent the centers of the Bloch
lines.

that given by Eq. (6), the value of B'p/By' will lie
between zero and the value given by Eq. (8).
This situation occurs for the mall of a hard bub-
ble in a field gradient H=P, sing, and so we
write

BP/By =+ 2n, /d —(MH, d/4A n)fcosy, (10)

where n, is the total number of Bloch lines in the
bubble and 0 ~f ~ 1, and we make the resonable
assumption that f is a monotonically increasing
function of n, and of the amplitude IJ, of the field
gradient. Hence, the number of Bloch lines per
unit length of bubble wall is

p=n, /md+ (MH, d/8mAe)f cosy,

i.e., the density of Bloch lines is larger on one
side of the bubble than it is on the opposite side.
Since we have made the assumption that the
Bloch lines are closely spaced, the theory de-
veloped here cannot be applied when P, is large
enough to cause p to become small in any region
of the bubble wall.

The wall width derived by Rosencwaig, Tabor,
and Nelson, in the limit where the exchange en-
ergy is much larger than the anisotropy and de-
magnetizing field energies, can be written as

l /m=(&27ip) '. (12)

On isolving Eqs. (3) and (4) with the values given
by Eqs. (9)-(12), we obtain

B'g/By = (MH, /2Am)f sing,

where y
= qd /2 and d is the bubble diameter. On

integrating we obtain

p„=v „/P = (y/n)(l /m),

8~P/By~ = MH/2A o..
If v, is not zero, but has a value smaller than

950

(7)
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TABLE I. Comparison between measured and calculated velocities of hard bubbles.

aIl
(Oe)

Vii/~&
(cm/sec Oe)

Meas Calc

V~/aH
(cm/sec Oe)

Meas Calc
V~/Vii

Meas Calc

6.2
6.2
6.2
8.9
8.9
8.9
8..8

0.8
2.5
5.9
0.8
1.4
8.5
8.0

15.0
5.0
2.8

27.7
8.4
8.0
4.2

15.7
5.0
2.7

12.4
7 4
2.8
5.1

82.5
29.1
24.4
45.0
24.9
21.6
14.7

84.5
29.1
28.9
20.2
21.7
16.8
17.9

2.2
5.8
8.8
1.6
2,9
7e2
8.5

2.2
5,8
8.8
1,6
2.9
7.2
8.5

0.21
0.48
0.54
0,16
0.27
0.48
0.81

where both p., and jL(.„are functions of q through the term p.
In order to relate the wall velocities v„,v„ to the bubble velocities V~~, V~ (Fig. 2), we assume that

the bubble can move without significant distortion. On equating the total component of the external
pressure acting on the bubble wall in the direction of VII to the total component of the internal pres-
sure in the same direction, and similarly for the direction of V~, we have

ned values of f
red values of Vg

g ese values of f we
then calculated the values of V~~/AP and Vgb P.
Both of these are included in Table I, although
only one is independent once the ratio V+V~~ is
specified. It can be seen from Table I that the
agreement between theory and experiment is
very good.

The theory developed above is thus able to ex-
plain the dynamic behavior of hard bubbles using

V~ ~ (ns+f)
n(1-f) ' (15)

~II d Y

~P 4n, (1+n')

where AIJ= 2IJ, is the field difference across the
bubble and

n &2(n'+ f)
~2(n'+f ) n(1-f)'

f 2M(v„/p„+v, /ti, , ) sint) dq= f 2M(V~~/p„— V j, p, ) sins')dt)= f 2iMPosinsqdq,

2M(v„/ i„i+v, /p, ) cosgdq= f 2M(V jp.„+V„/ii, ) cos'tide= 0,

where the contributions from the two velocity
components have been added since they both pro- with the theory, we have obtai
duce damping (damping constant=2M/p) of the from Eq. (15) using the measu
wall motion. After integrating we obtain VII shown in Table I. Usin th

A typical value of the Landau-Lifshitz damping
parameter A/y for a high-mobility garnet iss
1.4x10 ' Des sec/rad. Hence, we have n=X/yM
=0.2, using the values y=1.76~10' rad sec '
Oe ' and 4wM =150 G. V/b, PV J~P, and Vg
V~~ are plotted versus f in Fig. 3 with these val-
ues of the parameters and d=6.2 pm and n, = 50,
which is a typical value for n, for hard bubbles
in this material (Rosencwaig, Tabor, and Nel-
son'). A direct comparison can thus be made
with the measured values reported in Ref. 1
which are reproduced in Table I (the values of
4H shown are the values of the drive field in ex-
cess of the minimum value required to make the
bubble just move).

Iri order to compare the measured velocities
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FIG. 3. V~~/&H, V~/&H, sud V~/V~~ versus f for the
following parameter values: d=6.2 pm, n() =50, n =0.2,
y=1.76 &&10 rad sec Oe
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the same model which was developed to explain
the static properties. The ve1ocity component
perpendicular to the applied field gradient fol-
lows naturally from the Landau-Lifshitz-Gilbert
equation of motion without the introduction of
any arbitrary assumptions. The dependence of
the bubble velocity components on the drive field
is correctly explained qualitatively by the intro-
duction of the f factor, but a quantitative com-
parison with experiment must await a detaiIed
derivation of the dependence of f on the drive
field.
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Certain magnetic domain walls in a garnet film show a much reduced mobility from
that of normal domain walls in the film and are interpreted to contain vert;ical Bloch
lines. Theory shows that forward wall motion involves sideways propagation of Bloch
lines and that in the high Bloch-line density limit, the mobility for small u is reduced to
n of the conventional value, where Q. is the Gilbert damping parameter.

Until recently the theory of ferromagnetic or
ferrimagnetic domain wall motion in a constant
field has been confined to the case of a uniform
Bloch wall propagating in an infinite medium, It
has therefore involved only one-dimensional solu-
tions of the Landau-Lifshitz equation. In this
case, Doring' has shown that the velocity of the
wall is governed by the precession of the magneti-
zation within the wall width about the demagnetiz-
ing field of the wall, and Walker' has calculated
an upper limit of this velocity. More recently,
the theory has been extended by Slonczewski'4
and by Schlomann' to cases of thin films where
two-dimensional solutions are required because
surface stray fields vary along the thickness of
the film. In one of these cases, interacting of a
horizontal (parallel to film plane) Bloch line with
the stray field was invoked to account for critical-
velocity observations of Argyle, Slonczewski, and
Mayadas.

In this paper we consider a new kind of wall mo-
tion involving the propagation of Bloch lines. We
have studied such effects experimentally in garnet
films with anomalous cylinder (bubble) and stripe

domains. The static behavior of these domains
has been interpreted in a previous paper' (I), and
also by Tabor et al. ,

' in terms of vertical (paral-
lel to easy axis) Bloch lines interacting along the
perimeter of the domain. We will argue that the
mobility of such walls is a two-dimensional prob-
lem, involving forward propagation of the wall
and sideways propagation of Bloch lines. ' How-

ever, in contrast to the earlier studies in films, '"'
the surface of the specimen plays no essential
role in the dynamic phenomenon, which shouM
therefore occur as mell in a bulk specimen, given
the initial presence of Bloch lines.

In I, a garnet film 7 p,m thick and of comp.osi-
tion (Yb, »Eu, 65Y»)(oa, ,Fe»)O» was shown to
sustain classes of bubbles and stripes with dif-
ferent characteristic dependences of dimensions
on field and different characteristic collapse
fields. We chose to study the mobility of the bub-
bles with the highest collapse field (132 Oe in
Fig. 2 of I) because we could easily differentiate
them from other bubbles by lifting the bias field
to just under this collapse field and thus eliminat-
ing all other bubbles and stripes. We measured


