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A theory based on the hypothesis that the perimeter wall of a magnetic bubble may be
composed of alternate Bloch and Neel segments is shown to account quantitatively for
the anomalous dependence of diameter on bias field of the recently observed "hard" bub-
bles in garnet films.

Recently a new class of cylindrical magnetic
domains or bubbles has been observed. ' These
new bubbles, designated as hard bubbles, have
static and dynamic properties substantially dif-
ferent from those of normal bubbles. Their most
anomalous static property is their much larger
range of stability in both applied-field and diam-
eter variations. Furthermore any material that
allows these hard bubbles also exhibits a range
of intermediate bubbles that collapse at fields
and diameters intermediate between those of the
hard and normal bubbles.

In this Letter we wish to show how the static
properties of these hard and intermediate bub-
bles can be quantitatively explained by assuming
the presence of Neel segments in the Bloch wall
that forms the perimeter of the bubbles. "

We therefore consider a hard bubble as having
a wall as shown in Fig. 1(a). Here the magnet-
ization is up (+) within the bubble and down (-)
outside. The wall itself is composed of a set of
Bloch segments of opposing polarity. These
Bloch segments are separated from one another
by 180 walls which are essentially Neel seg-
ments. In Fig. 1(b) we show the central spins
through three Bloch segments separated by two
Neel segments. We define 6 as the width of the
Bloch wall, y as the length of a Bloch segment,
and x as the length of a Neel segment.

As long as the sense of rotation of the spins
around the bubble perimeter is maintained as
either clockwise or counterclockwise, then this
segmented configuration is frozen in; that is, it

is stable against small spin perturbations. If we
consider that both the Bloch and Neel segments
are walls of uniform rotation, 4 then the wall en-
ergy density (energy per unit surface area of the
perimeter wall) stored in each segment can be
written as

aB =w'A/6+ 2Kb,

rrN = m'A/5+ 2E5+ w'A5/2x'+ 2''5.
Hire A. is the exchange constant, K the uniaxial
anisotropy (with 2K being the effective anisot-
ropy for spin rotation along the dimension 5),
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FIG. 1. (a) Top-view representation of a cylindrical
magnetic bubble showing the perimeter Bloch wall with
Neel segments (dark regions). (b) Representation of the
spins in three Bloch wall segments separated by two
Neel segments.
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and M is the magnetization. The Bloch energy
density oa is the usual one where we have ignored
any small demagnetizing terms. The first two
terms in the Neel energy density oq are the ex-
change and anisotropy energy densities arising
from the spin rotation across the width 5. The
exchange energy density arising from the spin
rotation across the length x can be shown to be
given by the third term. Note that there is no

anisotropy energy arising from this spin rota-
tion. The last term in o~ is an approximate de-
magnetizing energy density and is derived by con-
sidering both magnetization components, paral-
lel and perpendicular to the perimeter wall, in
the Neel segment.

The total wall energy is now given by

E = v, (2nyh)+ og(2'&), (2)

where 2n is the total number of Noel (and Bloch)
segments present and h is the bubble height. Since
2n(x+y) = «, where d is the bubble diameter,
Eq. (2) can be rewritten as

S =(m2A/a+ Z~)W—I + (w A/2x+ vM x—)M ~ (3).

x, = ~(A/mM')"' (4)

5 = vA pK+ —
I +MIx

d&x

The Bloeh wall width ~ is not only a function of
the material parameters A and K but also of the
bubble parameters n, d, and x. The width 6 de-
creases if n increases, if d decreases, or if x
differs from the equilibrium value xo. For n=0
or d large we find that 6 and E are the usual ex-
pressions that one would obtain for a simple
Bloeh waQ. '

As long as the total bubble perimeter md &2nx~,
then the length of each Neel segment in this non-
compression region is x„,=xo, the equilibrium
length. The Bloch wall width' and total wall en-
ergy in this region are then g'ven by

~ = ~~[ '++2&-(~M2~)~~~/~] ~I2-
and

To find the configuration that will have the min-
imum energy we minimize the above expression
with respect to both 5 and x obtain

&.,= (~'&/~„, + 2m„,)«I + 2~~„,[~(~M'~)'&']

For any given n, E„,decreases to zero as d-0. The dimensionless derivative of this energy is

Z„,= (4~'M'h') '8Z„, /eZ = (4~'M'a') '(~'A/~„, + ,'Z~„, )~—a,

where we have made use of the fact that S&„,/85 =0. We find that R„, is essentially constant for d/h
&1 and then starts to increase as d/h - 0. A normal bubble (2n = 0) has E decreasing as a straight line
to zero. Thus its R is a constant (=f/h) at any value of d, ' where the material length 1 =a /4wM', with
c the Bloch wall energy density.

It is cleax that the bubble cannot remain forever in the noneompression region as d-0, since it will
eventually reach the point where wd =2nxo. At this point, the Neel segments will come into contact with
one another and any further decrease in d will tend to compress these segments. In this region the
Bloch segment length y =0. We will assume a uniform compression and thus set the Neel segment
length in this compression region to x, =md/2n. The Bloch wall width and total wall energy are now
given by

5,= vA( .'Z+ 2n'A-/d'+ .'wM') "'-

+ N'&, «&+I &, „+.'w'M'a I. — (10)

Since 5, o=d for small d, E, will not go to zero but will approach an asymptotic value of 2'~2m'~RA as
d-0. The dimensionless derivative in this region is found to be

+ N'&, I~&-2wn'XII, g+ ,'~'M&gg, -. -

One finds that R,-O as d-G.
@ ean 48 deterIQlne4 expeglmentajly by Dleasuring the bubble d1Rmetex' d fox' various values of the ap-
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R here is approximately equal to the I/j't of the
normal bubble. Good agreement with the exper-
imental data is obtained if one considers an n-15
for the weaker intermediate bubble, n-25 for the
stronger intermediate bubble, and n- 50 for the
hard bubble. Thus this segmented mall model
appears to account adequately for the anomalous
dependence of bubble diameter on bias field of
these hard and intermediate bubbles.
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FIG. 2. Theoretical curves for g and experimental A
values for both intermediate and hard bubbles in an
(ErGdGa) iron-garnet film, The region to the left of the
short vertical line is the compression region, while that
to the right is the noncompression region. The value of
A shown takes into account the presence of Ga.

plied bias field H, and then calculating 8 by us-
ing the equilibrium relation

d a dlR+- -F —I=0,
h 4' j't ]

where the second term is the dipole energy term
and F(d/h) is Thiele's force function. ' por a,

normal bubble R has been found to be a constant
(=I/h) for any d, while the intermediate to hard
bubbles show an R that decreases as d decreases.

Measurements of R as a function of d/It have
been made in various garnet films for both hard
and intermediate bubbles. ' In Fig. 2 we show
theoretical curves for R and experimental R val-
ues for both a hard bubble and two intermediate
bubbles in an (ErGdGa) iron-garnet film. In mak-
ing the theoretical curves we have joined R, and

R„, where they intersect (position of short verti-
cal line). One can readily show that at this point
the energies E, and E„, are also equal. We note
from Fig. 2 that in the noncompression region
where y & 0, even the hard bubble will appear as
essentially a norma1 bubb1e since the calculated
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