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Equilibrium transport coefficients are calculated for a three-dimensional magnetized
plasma. It is shown that the transverse spatial diffusion and conductivity coefficients
are related via a generalized Einstein relation. These coefficients have both a 1/8 (vol-
ume dependent) term (with B a uniform magnetic field) as well as a 1/B (volume inde-
pendent) term for a finite plasma. For an infinite plasma, the coefficients have a "clas-
sical" 1/8 dependence.

Recently there has been considerable interest
in the two-dimensional (2D) guiding-center plas-
ma. ' ' In this model the particles are charged
rods, aligned parallel to a constant uniform mag-
netic field B=BS in the z direction, and interact-
ing electrostatically through the logarithmic Cou-
lomb potential. The guiding- center approxima-
tion implies that the velocity of each rod is given
by cE xB/B', where E is the electric field due to
all the other particles. Anomalous (1/B) equilib-
rium transport coefficients have been derived for
this 20 plasma, in particular the spatial diffu-
sion coefficient' and the conductivity coefficient, 4

both of which exhibited a volume-dependence di-
vergence. In this Letter we calculate equilibrium
transport (diffusion and conductivity) coefficients
for a 3D plasma in which the particles move with
the EXB drift an"oss the field lines but whose
motion along the field lines is given by Newton's

laws of motion (i.e., we have generalized a 3D
model used previously' in calculating the diffu-
sion coefficient; in this model' the particles free
streamed along the fieM lines, but here we are
taking into account the effect of the fluctuating
electric fieM on the particle motion along the
field lines).

Consider a plasma of N electrons and N ions
in a volume V with a uniform magnetic field 8
=Bb in the z direction. The fluctuating electric
field is given by

v E(x, t) =4ng&et5(x- R, (t)),

where R,.(t) is the position of the jth particle of
mass m,. and e& at time t, and the Q& is a sum
over all particles (electrons and ions).

The transverse spatial diffusion of a group of
"test" ions, present in the electric field of Eq.
(1), is given by

D = f, (v (0) v (t)&dt=(c'/B')f" (E (0)~ E (t))dt. (2)

In calculating D~ it is convenient to consider the electric-field autocorrelation tensor (E(0)E(t)), which
on taking the Fourier transform of Eq. (1), is

16m'e e
(E(0)E(t))=(E(0, 0)E(r(t), t))=Q, ' '

Q—,(exp(ik [r(t)+R, (0) —Rz(t)])), (3)

where angular brackets represent averages taken with respect to the Gibbs canonical ensemble, since
the plasma is in equilibrium.

R&(t) =R&(0)+(e,/m&)f dv. f d)E&($) bb+cf drE&(r)xB/B2+p&tb (4)

=R,(0) +BR&,[(t)b+4Rg (t), (5)

say, where E&(r) =E(R;(t), t) The pos.ition of the test ion, initially at the origin, is given by

r(t) =(e/m, )f dT f d& E(]).bb+cf dvE(T) xB/B'+v~, tb

—= br
~, (t)b+Ar~(t),

(6)

(f)
where m, is the mass of the test ion of charge +e. V, and v~~ are the initial velocities along 8, and are
distributed according to the Maxwell-Boltzmann distribution.
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The ensemble average in Eq. (3) is too difficult to evaluate, and to proceed further assumptions have
to be made. %e first factorize the exponential of the initial locations from the perpendicular and paral-
lel motion. The delocalization of the remaining term occurs through two processes: (1) guiding-cen-
ter drift across the field lines and (2) the motion, due to the fluctuating electric fields, along the field
lines. For large B, k~, 'hx„'»(k~. br~)' on the average, for k,

~
c0; and similarly for the jth particle.

Thus we decouple the perpendicular and parallel motions. Hence"'

&expftk [r(t)+R, (0) —RJ(t)])) =&expfik [R,(0) —R.(0)]])
x &exp(tkiiarii)& &exp(tk iiaR& ii& &exp(tk~ nr, )) &tk~ hR~g)). (8)

The first factor in Eq. (8) can be immediately evaluated since the R,(0) are statistically distributed ac-
cording to the Gibbs ensemble. Since the electric field is assumed to be jointly normal (i.e., it is a
Gaussian distribution for successive time instants), then, with the employment of the cumulant expan-
sion" on the remaining factors of Eq. (8), it can be shown' that on summing the diagonal components
of Eq. (3) we have

c' d'R~(t) e + exp[- 2k~'R ~(t)] e

k, k)( &0

9 (t)=-'&E (o).E (t)&,

and RJ(t), with R~(0) =dR~(0)/dt=0, gives the mean dispersion of the test ions. Note that

dR~(~)/dt = gD~,

(9)

(10)

f(k, t) =2 k k, K
2exp(-k~~'F;, „'t'-k~~D~~t'),

2 k' k'+K ' (12)

since m, »m, . Here, Xo'=(Debye length)'=KD '=kBT/8mn, e' with no=N/V, and e =16m'n~'c'/B'Ko'.
V;,„is the ion thermal speed (k~T/m, )'". The velocity diffusion coefficient D~, =(e'/m, ') f,"dt&E~~(0)E~~(t))
can be calculated using the superposition of dressed free-streaming test particles, and we find that

-s/2 3 ~e)
+pg ~D &p1ln&p1

where e»=1/n, A. Die the plasma parameter, &u~, '=4nn, e' /m„and 0, =eB/m, c. One now sees that for
k~~&KDe» 1ne» the free-streaming part of Eq. (12) will dominate the velocity diffusion part and vice
ve rsa for 0 )) KDf p1 inc p1, Except for a short initial time, 8~ =—,'D ~ t, and one can easily set up an
iterative scheme to correct this lowest-order approximation. Hence, on integrating Eq. (9), using
Eq. (11), the transverse spatial diffusion coefficient D~ is given by [on going from discrete to continu-
ous k and allowing a cutoff k~(min) = 2m/L]

D~ = a + (a'+ 2/)'"

where

(14)

P — — B (2pn g &) (15)

a = »&, 'e» 3 ln +21n +21n- lnln
1 ck&T v~& 1 ' 1 1 1

(16)f p1 f p1 6P1

We thus see that D~ contains two terms, one being proportional to 1/B and dePendent on the volume of
the plasma (i.e., the p'~' term), and the other being proportional to 1/B' and independent of the plasma
volume (i.e., the a term). Note that for an infinite plasma P -0, so that

1 ckqT&u~q ( 1 l' 1 1 1
3~ ln

~

+21n +21n lnln (1't)
Ep1 Ep1 6p1

which exhibits the classical 1/B' dependence. ln the limit of very large magnetic fields, D~(e
=(2P)'~', and the magnetic fields needed for this Bohm term to dominate the classical term are not un-
attainable in currently proposed thermonuclear plasmas.
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The transverse equilibrium conductivity coefficient can be calculated using the Kubo'" formalism
once we have written down the Liouville equation for our 3D plasma model [see Eq. (18) with the right-
hand side equal to zero]. We now apply an external spatially uniform electric field E = Ec exp(- t(dt) to
the thermal equilibrium plasma at t =0. Liouville's equation becomes

(6/Bt+H, )D = —e ' 'H, D,

where

(18)

~(( E~' xB

~(( Ec'XB

e, a &

B e, B &

Bx(' m( Bvg()
(20)

Here a prime denotes a 2D vector (the x, y components).
We now carry out a perturbation expansion" in powers of E, (or H, ) in Eq. (18) and consider only the

first term (linear response). To lowest order we see that D(o) is just the Gibbs distribution for an
equilibrium plasma. To first order we find that [with D ' =0 at t =0]

D(j.} - j(dt d 5 ~t -v'pro~ D(o}
1 (21)

The ensemble average of the current density Q, e,v, /I, ' can now easily be calculated using D(') and D '):

2 J.' =~ ' 'Zf yq ~(~i(0) ~g(~)) E.~' '« (i) ~=' ',
~

~

~

o B

where we are now dealing with 3D vectors. Thus the conductivity tensor is given by

(22)

o ((u) = d~e' 'Q ' ' (v, (0)v,(T)).
0 &oi

For the transverse components of a, the contributions from i =j terms dominate4 those with it j so
that a is diagonal with

(23)

(24)

The dc conductivity (&u =0) is then given, on using Eq. (2), by

(7J d (n,e '/k, T)D„ (25)

where D J is the diffusion coefficient given by Eq. (14). Equation (25) is a "generalized Einstein rela-
tion. " The ac conductivity requires a numerical solution of Eq. (24), which hopefully will be done in
the near future.
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