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times in a superconductor such as electron-elec-
tron, electron-phonon, and branch mixing' must
be considerably shorter. In addition, the behav-
iox' of the energy gap of an illuminated supercon-
ductor can be used to measure the quasiparticle
recombination time in superconductors.

%e are pleased to acknowledge valuable dis-
cussions with Dr. C. Owen and Professor D. J.
Sealapino.

~Besearch supported by the National Science Founda-
tion.

L. H. Testardi, Phys. Hev. 8 4, 2189 (1971).
2C. S. Owen and D. J. Scalapino, Phys. Bev. Lett. 28,

1559 (1972).
3The effective recombination time T is not the quasi-

particle recombination time v'~ since the phonons pro-
duced by recombination of the quasiparticles @rill them-
selves create quasiparticles. See A. Bothwarf and
B.N. Taylor, Phys. Hev. Lett. 19, 27 (1967).

S. Y. Hsieh and J. L. Levine, Phys, Bev. Lett. -20,
1502 (1968).

~A. Bothwarf and M. Cohen, Phys. Bev. 180, N01
(1963).

8Rothwarf and Tay1or, Ref. 3.
C. Kittel, Introduction to Solid State Physics (Wiley,

New York, 1971), 4th sd„p. 249.
8B.

¹ Taylor, Ph.D. thesis, University of Pennsyl-
vania, 1963 (unpublished).

9%e would like to thank C. Glen for sending us the
results of computer calculations of p* as a function of
+ and reduced temperature,

IOJ. Clarke, Phys. Hsv. Lett. 28, 1363 (1972}; M. Tink-
ham aud J. Clarke, Phys. Hcv. Lett. 28, 1366 (1972).

Some Results Concerning the Crossover Behavior
of Quasi —Two-Dimensional and Quasi —One-Dimensional Systemss

Luke L. Liu and H. Eugene Stanley
Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Hsceivcd 27 April '1972)

A magnetic system with intraplanar and interplalIar interaction strengths J aud RJ is
j.s treated. Rigorous relations are established concerning the first few derivatives vrith
respect to It of the susceptibility x(R}. Considering g(R) =b 0+b,EL +b2it +, we find b,
and the order of magnitude of b2. Hence ere can predict vrhen the system "crosses over"
from d-dimsusional to d-dimensional behavior (8.g., for quasi-two-dimensional sys-
t8111s, d=. 2, d =3, w11118 fol' quasi-0118-dlm811sloual sys't8111s, d= ly d =3). T118se I'8-
suits a1so support scaling with respect to the anisotropy parameter A.

There has recently been considerable interest' '
in systems with "lattice anisotropy" (different
coupling strengths in different lattice direchons).
Consider, e.g. , the d-dimensional nearest-neigh-
bor (nn) Ising system with Hamiltonian

M hi)X--J Q s~s;-RJ
j ti~- Ug

wh~~~ r;-=(&„~„,~;) -=(1I,, v,.) with u,. = (x„~~,

&q), and v;=(&~, 1, ' ' ', x~). For example, very
recently there have been extensive calculations'
concerning the case d = 2, d = 3, corresponding to
a "square to simple-cubic crossover. " Hence-
forth we shall consider this system fox the pur-
pose of speciflclty Rnd clar1tyq thus r1= ($11yI ~

z )=(u;, z;), J=J„„RJ=J,. In the last para-
graph we treat briefly the case d= 1, d=3.

The system described by (1) is interesting be-
cause critical-point exponents, according to the
universality hypothesis, l shouM depend only
upon lattice dimensionality; and hence when R -0
(and the lattice "crosses over" from d dimen. —

sions), we expect anomalous behavior. This
cI'ossovel' bellRvlol' would be 011sel'VRMe If we
could vary R continuously to zero.

Another interesting property of the weakly
coupled layers is that even for 840 the system
is essentially two-dimensional at high tempera-
ture. jL'et when it is sufficiently close to the crit-
ical temperature T, (R), it is three-dimensional.
Hence there is a crossover region T„(R)~ T
~Ts(R) where the system transits from d= 2 to
d = 3 (cf. Fig. 1).

The crossover region is only a loosely defined
concept. To be quantitatively precise, we shall
define T& (R) as the solution of )((T~,R)/X(T» 0)
—1 =P and we arbitrarily choose T„(R)= T, »(R),
since this is roughly the temperature for which
the deviation (1%) of the reduced susceptibility
X(R) =)(/Xc„„., from the two-dimensional value
X(0) becomes experimentally appreciable. 4

This crossover behavior is most easily ex-
plained in the context of the scaling hypothesis, '
where we assume that there exist three numbers
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FIG. 1. Schematic diagram of the crossover behavior.
(a) The crossover region (shaded area) is bounded by
Tg(R) and '1's(it) . ['i'~(R) ='f'apg(R) is the temperature
at which the system differs appreciably (1/o) from being
two dimensional. ] TL&(R) is the temperature at which
Eq. (4) is no longer satisfactory. T, (8) is the critical
temperature. The generalized scaling hypothesis pre-
dicts that all curves should approach T, (0) via the pow-
er law A ~. (b) Dependence of reduced susceptibility
g upon 1' for R =0 and for R =R~, indicating the defini-
tion of T~(R) . Note that this drawing is not to scale.
(c) Sketch of hypothetical experimental data, plotted
in the conventiona1 1og-1og p1ot, for a system which is
described by the Hamiltonian {1)with It =Bi.
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x,(o) = 28x.',
where 8=—PZ. This relation is useful for the following purposes:

(i) Equation (3) is the first-order correction term of the two-dimensional approximation of the three-
dimensional quantity x(R). In other words, we have

x(R) = x.+Bx,(0)+-.B'x.(0) + = x.+R(»x.')+o(B').
To O(R), T~ (B) may therefore be found from the solution of 28BX,=p.

(ii) Equation (4) may be used as a checking method for the leading coefficient of the general-R high-
temperature series expansion

x(R)=Z Z .,B'8".
n=Oj=O

(iii) If (2) is valid, Eq. (3), which yields y, =2y„ furnishes a simple but rigorous proof of y = y„and
hence y„= (n+1)y,.

We shall now derive the following results:

where G is the singular part of the Gibbs poten-
tial, 7= T —T„and IJ is the magnetic field. Iog X"

From the scaling hypothesis, the situation sketched R=R)

in Fig. 1 follows immediately.
In particular, we note that (2) implies that

T, (R) —T,(0) - CR'~~ and Tp (R) —T,(0) -A~
B'~v,

where y -=a„/a, is the "crossover exponent. " On I I

differentiating (2) twice with respect to H and n T~(R) ) TA(R) )

times with respect to R, we have X„(7;Ii=0,R=0)
I Tl ~», with y„=y, +ny, where X„=(8"X/dR")„,.
The exponents y„cannot be calculated exactly, but they can be estimated by extrapolations based upon

high-temperature series expansions. '&here presently exists a dispute' ' "in the literature concerning
numerical values of y„, and the most recent estimates' seem to challenge the scaling prediction y„
=go+Pl+.

We shall first derive rigorously the relation

88 Xo - X (0) -48 Xo

488 x -x (0) - 88 x

(6)

Equations (6) and (7) yield y, =3y„and y, =4y„which agree exactly with the scaling predictions y„
= (n+ l)y„ thus the reported estimates'b are unreliable. From (6) we have a fairly good estimate of
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the second-order correction term; therefore {4)may be improved, with the result

X(~) =- X.[1+»~X.+R'4~'X.'f.(~)+o(~')],

where 2~f,(8) -1.
The proof of (3) proceeds from observing that at B =0, spins on different layers (i.e., if z„Wz, ) are

not coupled. Hence for T &T, (0) and B=O (i.e., (s,.&„=0), the thermal average of spin product is

(s,s,),= 5(z„,z, )(s,s,&„
where ( ~ ~

& denotes a thermal average of a d-dimensional Hamiltonian (1) and ( ~ .
&, denotes a therm-

al average of a d-dimensional Hamiltonian. Note that on the right-hand side of Eq. (9) we set R =0
in the Hamiltonian before taking a thermal average, whQe on the left-hand side we set B =0 after cal-
culating the thermal average. Furthermore we have, for z, &z, ,

(s,.s,.s„s,&„,= 5(z, , z, ) 5(z, , z,}(s,.s,&„(s,sg &, +5(z, , z, ) 5(z, , z, }(s,.s,&, (s,s, &, . (1o)

The reduced susceptibility of a lattice which is composed of K+1 layers with M2 spins in each layer'
18 given by

X(T, a=0;R)=[(x+1)»'] ' Q [(s,s,&
—(s,.) (s,.)].

.f ~, I'-

Differentiating (11) and using (9) and (10), we have

(~+ 1)»'X,(0) =- eE&s,',3t,&.—.=~K Z [Q&s:...s:, ),Z(s:,.„,s:,.„„&,

8U g +f f g +3, g U g U g (12)

Now, esch of the four summations inside the curly brackets of (12) is over all spins which lie in a single
plane, and thus each summation is exactly the reduced susceptibility of a theo-dimensional lattice.
Thus in the thermodynamic limit, we. have Eq. (3).

Four remarks are worth making at this point;
(i}Equation (3) may be derived directly using graphical methods that are valid for arbitrary spin

dimensionality B, and hence its validity is not restricted to the Ising model. In particular, for the
spherical model (D = ~), (3) can be derived directly from the general-B partition function as well.

(ii) The argument used in deriving (3) may be extended to any pair of lattices that can be related by
a "lattice anisotropy" term in the Hamiltonian, with the result

X&'(0}=g'" &X.', (13)
where g~~ is the number of "additiona/ nearest neighbors" that a site acquires when the lattice aniso-
tropy term transforms the lattice from being o-dimensional to being d-dimensional [e.g., g= 2 for sq-sc, linear chain- sq, but g= 4 for linear chain (lc) -sc and g= 8 for sq- fcc]. If X, contains non-
nearest-neighbor terms, we may simply replace g"'g by P,.g, "~8, , where g, '~ is the number of neigh-
bors interacting with a site with strength RJ,.

Equation (13) may be used as a checking procedure for the coefficients of (5) (e.g. , at 8 = 0, the a„,
are the coefficients in 2X,q, while in the limit of J-O, Ran= const, the a„„,are the coefficients in
4X&.')

(iii) Note that since our derivation starts from the correlation function, we may obtain the following
relations for the second moment p. , of the correlation function:

(su./8&)„=.= 2&[x.'+ 2g.v, (0)],
and the general f susceptibility (where g is a 4 =3-dimensional vector):

[sX(e)i»] s=o = 2~[ Xo(e)]'cos(q z),

with y(g) = fs"' C,(r) d'r
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To derive (7) we may proceed in exactly the same fashion and arrive at

8 'X (0)=4[4(0)]' 2 Q (s,s ), ((s,s„-s-„~s„-,)„—(s,s )„(s„.s; )) +2+(s,s„-(Ps-„.))
U

The Griffiths inequality'

(16)

(s,s„-s-„s-„)—(s,s„-)(s„- s-„)- 0 (17)

permits us to cancel the second term on the right-hand side of (16). Noting that the third term is pos-
itive, we have the second inequality of (6). Using'

(s,s„-)(s-„s„-,) +(s,s7 ) (s„- s-„) )(s,s„-s„-.s„- ) —(s,s„-) (s„- s„,)j 5 5

and the fact that(s, sos-„.)=-0 for the Ising system,
we immediately have from (16) the first inequal-
ity of (6).

For higher derivatives, the algebra becomes
much more involved. However, we have been
able to derive (7) for systems for which Ginibre's
generalization' of Griffiths's inequality' is valid.
Furthermore, for the self-avoiding walk on an
anisotropic lattice, by means of simple graphic
theoretical arguments we have proved y„= (n+ 1)y,
for all n.

We conclude with several remarks. (i) The ex-
porient p obtained from the y„'s does not neces-
sarily characterize the asymptotic behavior of
T, (R) —T, (0) except within the framework of
scaling-type arguments. (ii) The previous deriva-
tion of p = y, exploits the relation d v = 2 —a, for
which numerica1 estimates indicate there is a
2% discrepancy for d=3. Our derivation of (3)
is rigorously true, independent of the relation
dv=2 —n. (iii) It is clear that for different
thermodynamic quantities, the crossover region
may be different. In particular, since the first-
order correction term (sCs/9R) in the analog of
Eq. (4) for the specific heat is se7 o, it would be
more difficult for one to use specific-heat mea-
surements to cross over into the 8=3 region.
(iv) One may also use (4) to determine the aniso-
tropy parameter R. For example, experiments'
show that (CDa)~NMnCls is essentially an S =

—,
'

antiferromagnetic Heisenberg linear chain for
T) 1.1'K with intrachain coupling J= —6.3'K.
Assuming the experimental error bar is 5%, we

may substitute T=1.1'K, S, and J into the equa-

tion 4R|3JX~, (0.05; we get R s 10 ', in contrast
to the value R - 10 ' obtained by a Green's func-
tion analysis. '
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