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Critical exponents for a d-dimensional system with an isotropic n-component order
parameter and long-range attractive interactions decaying as 1/rs+ (o & 0) are derived,
using the renormalization group approach, as power series in e = 2o -d & 0 (o & 2, fixed)
orb, o o —,Ms&0 (d fixed) and, separately, to order 1/n for slid and a ~2. For ~&Othe
exponents have fixed ("classical" ) values; when e =Zo = 0 fractional powers of ln(aT/T~)
appear; when a'& 2 the exponents assume their short-range values.

It has been recognized for some time that long- To present the result we define
range attractive interactions decaying, in d di-

20' —d and 60' —0' —2dqmensions, as (2)

—y(r)-J(r)-1/r"', o &0,

should lead to values for critical exponents dif-
fering from those appropriate to short-range in-
teractions' (decaying as e " ' or, see below,
o &2); furthermore, such forces can induce criti-
cal behavior in one- or two-dimensional systems
where it would otherwise be absent. ' These sur-
mises can be demonstrated analytically for all
d in the spherical model. ~ In addition, the be-
havior of the one-dimensional spin-& Ising model
has been studied by numerical extrapolation tech-
niques. 4 Despite the fundamental theoretical in-
terest of the problem, however, there are no
results for Heisenberg or XF models, and only
one other, isolated, numerical estimate for the
Ising model (for d = 2 and cr = 1)."

In this note' the critical exponents for general
d and o (&2) are derived for a system with an
isotropic, n-component order parameter, by
using the renormalization-group approach~ and,
the e-expansion and (1/n)-expansion techniques. ' "

1 n+2 e (n+2)(7n+20)
y n+8 o (n+8)'

and treat d as a continuous variable. ' " In the
"classical" regime e, ha &0 one finds, for all n,

r/=2-o, v=1/o, y=1.

On the borderline c =0, v= &d, these expressions
still apply but the correlation length and suscep-
tibility vary as

g(T)-t ~~(int ~)"'~~ and )((T)-t (lnt )"' (4)

where n' = (n+2)/(n+ 8) and t = (T - T,)/T, is the
reduced temperature deviation from critical.

In the nonclassical region ~, Aa &0 one obtains
for 0'(2

ri= 2 —v+ e'8(n, e; (2 —o)/e),

where for 0-2 we have

O(n, e; 0) =-,'(n+2)/(n+ 8)'+O(e),

although 8(n, e; tc) —0 as tc —~, so that for fixed
o'&2 the exponent g "sticks" at the classical val-
ue, 2- o; this has been verified to O(e') but
might well be true to all orders in ~. The sus-
ceptibility exponent for a &2 is given by

6(o) = o[t(1)—2e(2o)+4(o) l,
where g(z) is the logarithmic derivative of the gamma function, I'(z). In the range 0 &o &2, Q(o) is
well approximated by 3 --,'o . Expressions for other exponents follow from the standard scaling rela-
tions: y=(2 —q)v, etc. For fixed d the assumption of continuous dimensionality may be avoided by
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converting to expansions in 60; we quote only

4 n+2 8(n+2)(n —4) 28(-,'d)(7n+20)
d n +8 d'(n+8)i (n —4)(n+8) (9)

When n -~ all these expressions agree precisely with the exact spherical model results, as expect-
ed. '~'~ For large n and all o'&2, 0&a &o, we find e(n, e;so)=O(n ') and

1 e 8 1—=1- ———F(0 e)[9(o e)--] +0-
y o n j 2 (10)

with

I (ao)1 (c' &)I ( a&)l (~a&+ ~a&)

F(a) I'(-,' a —~)I'(-,' e)I"(-,'0 ——,
'

e )
(12)

On expansion in powers of e these formulas confirm (7) for large n.
I,astly, for 0)2 the short-range exponents apply for all d. To order ~ the corresponding previous

results ' are reproduced formally by putting 0 =2 as might be guessed'; however, the nonuniform-
ity noted in (5) destroys this continuity in e in order e~.

A comparison of the results (3) to (9) with Nagle and Bonner's' numerical results for spin-& linear
Ising chains is shown in Fig. 1. The agreement is quite encouraging except in the changeover region
(e =0, o =—,'). However, the estimates4 q for g probably lose validity for vs, and it seems likely that
the logarithmic factors in (4) are disturbing the numerical analysis for y (as can be tested by con-
structing examples). A similar comment applies to Joyce's a=0 result" y=1.13 for d=2 with n=1
and o = 2. For the Ising model (n = 1) in two and three dimensions our conclusions are inconsistent
with an argument of Griffiths" which suggests that the exponents should take their short-range values'
whenever 0 &1. However, the argument does not seem compelling and we believe the expansions can
be used up to (but not at) v= 2 for d = 3 and, less accurat'ely, when d = 2.

To calculate the exponents we start with the reduced Hamiltonian

X,/k~T=(2n) "fd"ku, (k)K& fi p+(2m) '4fd kfd'k'fd'k"u~(k;k', k")(sg s&.)(sl, - s 1, 1, , &-),

where k denotes a d-dimensional momentum
variable and sI, is the Fourier transform of a
locally defined n-component "spin" variable s(x)
for the point x in 0; an appropriate momentum
cutoff (or lattice structure) is understood. The
interactions are u, (k; k'; k" ) =L (constant) cor-
responding to a local la(x)I4 term, '" and, via
Fourier transformation of the interactions (1),
fol 0'4 1~ 2~ 3~. . .~

uq(k)=r+j k + jqk +' ' ', j,jq&0. (14)

918

The parameter ' t' varies linearly with the tem-
perature near T, .

Now if (A) o &2, the previous renormalization-
group analysis ' for short-range interactions
applies since only the leading k' term in (14) mat-
ters; specifically, higher order, including spa-
tially anisotropic and cutoff-dependent, terms
in u, and u4 damp out under successive renor-
malizations and do not affect the exponent values
which remain as calculated '; likewise the
dimensionality d can be supposed nonintegral.

When (B) o &2, the renormalization-group
analysis may be developed along previous lines."
Thus a reduction of the momentum cutoff by a
factor b =e ' renormalizes the length scale so
that the correlation length changes as

However, the spin rescaling factor, c, must now

be chosen so that the coefficient of k' in M~{k)
for the renormalized Hamiltonian (13) remains
fixed. The exponent q is then determined"'"
through the relation c'=O' " ". When u is small,
the leading correction to the coefficient jo iss. io

O(M~) and hence to first order in u the rescaling
factor is, by (13) and (14), simply b" ''c'; equat-
ing this to unity fixes c and then yields g = 2 —cr

+O(u~). In differential form the renormalization-
group equations for r and I to leading order then
become

dr Q dQ—=«+(n+2). , —=su-(m+8) . „(18)dl j+r' dl '(j+r)"
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FIG. 1. Predictions for y and g for long-range inter-
actions in one dimension. The dashed curve and line
labeled n =1 denote the 4o expansion (9}, truncated at
second order and first order, respectively; the solid
curve represents the corresponding second-order e ex-
pansion, for p. The vertical bars indicate the Nagle-
Bonner estimates (Bef. 4) for V and g for the spin-& Is-
ing (s =1}linear chain. The exponent p may be identi-
fied (Ref. 4) with p for o &~ but probably cannot be for
o & s' (where the omitted estimates rapidly level cff at
j=1.5).

u(l) =j'/[(n+8)(l+l)], (17)

may be substituted into the equation for r which,
on linearization, can be solved explicitly to yield

where s is defined as in (2), while j depends on

j, snd the momentum cutoff a ' (although by.
choice of units we can set j= 1 as in Refs. 7-9).
To this order the momentum integrands entering
the diagrammatic expansion" are spherically
symmetric and transform trivially to short-range
form by putting k' = q and d' = 2d/c'.

From (16) one first sees, as before, "that the
Gaussian fixed point ~*=u*=0 is stable when
e &0. This leads directly to the classical results
(8). On the borderline e = 0 (a=ad), this fixed
point is only marginally stable and to derive (4)"
we may, in its vicinity, neglect r in the second
member of (16). The resulting solution

an exponentially unstable part

n+2
r(l) =Fexp el — ln(l+f ),@+8 (18)
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plus transients which decay as 1/l for large I;
the unstable amplitude, F, is proportional to the
temperature deviation t. These solutions need
be continued only until t, ~r(l) reaches some
noncritical value of order 1, at which stage one
must have $, =O(a). Eliminating l between (18)
and (15) and using X- $' " then yields (4).

When (C) e &0 the Gaussian fixed point is un-
stable (with respect to u) and a nonclassical fixed
point with u*= ej'/(m+8) is found. The results
stated then follow from (14) to first order in s
by the previous arguments. "More generally,
one can anticipate that if &o„'(e) is the anomalous
or critical dimension' ' of an operator A(x) for
short-range interactions (o & 2), the correspond-
ing dimension for o &2 is &o~(e) = saw~'(2e/o) up
to corrections of order ~' for c &0. To obtain
the second-order terms Wilson's diagrammatic
formulation" has been employed with k replac-
ing k' in the elementary propagators. It proves
most straightforward to work with the order-
order-energy correlation function Gs, (k, k')
which satisfies the matching condition" G„(k,k)/
[G(k)]'~u '-~} y- 'y.'The calculations, while
straightforward in principle, involve intricate
details (the angular integrations leading, via
Mellin transforms, to Legendre functions of gen-
eral order) and will be published elsewhere. "

Finally, (D) the 1/n expansion has been derived
following Ki1son's method of summing to lead-
ing order the diagrams with most closed loops.
The extraction of the required logarithmic parts
of the Feynman integrals, with k replacing k'
is again rather complicated. " (Abe's formula-
tion" leads to a similar final integral. )
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Magnetic measurements have been made on a sample of Hes in a Pomeranchuk cell. Be-
low about 2.7 mK, the NMR line apparently associated with the liquid portion of the sam-
ple shifts continuously to higher frequencies during cooling, Below about 2 mK the fre-
quency shift vanishes, and the magnitude of the liquid absorption drops abruptly to approx-
imately & its previous value. These measurements are related to the pressure phenom-
ena reported by Osheroff, Richardson, and Lee.

Pressure measurements along the melting
curve of He' in compressional cooling experi-
ments have indicated the possible existence of
two phase changes occurring in the He' within the
compression cell. ' Osheroff, Richardson, and
Lee referred to these pressure phenomena as A
and B. A, believed to occur at about 2.7 mK, is
characterized by an abrupt decrease in the rate
of cooling in the cell during a period of time in
which the rate of compression is held constant.
The pressure at which A occurs, P(A), is highly
reproducible and does not display supercooling.
B, occurring at a lower temperature, perhaps 2
mK, is characterized by a sudden drop in the
cell pressure by a few ten thousandths of an
atmosphere upon cooling, and by a brief hesita-
tion in the pressure as it decreases upon warm-

ing, at P(B'). The pressure P(B') is highly re-
producible, and the B' phenomenon will not occur
unless the B phenomenon has already occurred.
The B effect, however, shows a great deal of
supercooling (as much as 10 ' atm), depending
upon how far below P(B') the cell pressure has
been lowered since last going through B'. The
smaller this pressure difference, the smaller
will be the degree of supercooling. Although the
magnetic field dependence of P(A) is small and
comparable in sense and magnitude to the expect-
ed depression of the melting curve itself at 2.7
mK in magnetic fields, the pressure at which B'
occurs increases sharply with increasing mag-
netic field, and the field dependence of the pres-
sure difference P(B') -P(A) can be represented
by fP(B') —P(A)]„[P(B') P(A)]s—,=+ 2.02-
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