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Damping of Finite-Amplitude Electron Plasma Waves in a Collisionless Plasma

R. ¹ Franklin, * S. M. Hamberger, and G. J. Smith*

(Received 7 July 1872)

Experimental measurements of the collisionless damping of a finite-amplitude electron
wave confirm recent self-consistent numerical solutions of the nonlinear Vlasov equation,

It has been shown theoretically"4 that the pro-
pagation of an electron plasma wave in collision-
less plasma depends on the initial amplitude of
the wave. This behavior occurs because electrons
which have velocities close to the wave phase ve-
locity (resonant electrons) become trapped in,
and oscillate in, the potential wells of the wave:
The number of trapped electrons and their fre-
quency of oscillation are determined by the depths
of the wells. This can lead to a decrease, or
even ehaQge of slgD, 1D tI16 lnstaQtaneous dan1plDg
r at e~' 4and to a change in the phase velocity'4
with increasing initial amplitude; or it can lead
to the growth of other waves in the system, ~' the
so-called sideband instability.

The theoretical approaches used to investigate
the time development of an electron wave with
finite initial amplitude may be broadly divided
into two groups. The first method, used by Knorr, ~

Armstrong, 2 and NQhrenberg, s is to solve numex i-
eally Vlasov's and Poisson's equations. Results
show exponential damping at the linear Landau
rate" y„if the initial amplitude po«A~T/e or if
the observation time t «& e ' [&ua= ka(eye/m)'"
is the initial frequency of oscillation of the elec-
trons trapped in the wave (~0, ko)]; the results
also show that the damping rate decreases (and
may change sign, indicating wave regrowth) when

ye and t are increased, but for yo-k~T/e even
the initial damping is not exponential, the instan-
taneous rate exceeding y~.

The second approach separates the electron dis-
trihution function into resonant and nonresonant
pax ts, and solves exactly the equations of motion
for the trapped electrons. This was used by
O' Neil' who assumed the trapped eleetxons to
move in the potential wells of a constant-ampli-
tude wave (i.e., y„-0), showing that after some
initial Landau damping the amplitude oscillates
and, because of phase mixing, reaches a constant
value after a long observation time. This con-
trasts with the behavior implicit in the work of
Al'tshul and Karpman, ' where the amplitude oseil-
lations persist for all times. Bailey and Denavit
extended the work of O' Neil to allow for a slow

variation in the wave amplitude (y„w0) for small
values of the parameter q-=yi /~a and obtained
results qualitatively similar to O'Neil's. Gary,
using a. perturbation method, obtained results
qualitatively similar to those of Knorr and Arm-
stxong. All of this work, as was pointed out by
Dawson and Shanny, ' is restricted by the assump-
tion that the slope of the initial distribution func-
tion is constant over the resonant region, and
the recovery of lineax Landau damping at short
observation times is a consequence of this restrie-
tloQ. Further, DOQ6 of tI118 wox'k 18 completely
self-consistent as it does not include the full ef-
fect of the varying wave amplitude on the electron
distribution and vice versa.

A third approach, which avoids these limita-
tions, is by computex simulation of particle mo-
tion. Dawson and Shanny find, in agreement with
earlier work, "that when cpa-4BT/e the initial
damping of the wave is not exponential, and is
more rapid than that predicted by Landau. Dena-
vit and Kruer show that for this condition the
sideband instability occurs.

Recently, Sugihara and Kamimura, ~o extending
eax lier work, ~ computed self-consistent equili-
brium solutions to the initial-value problem,
which effectively cover the range 0 &q & and
which recover the result of O' Neil as q- 0 and
linear Landau damping as q-~. {It is, however,
still assumed that the slope of the initial eleetxon
distribution function in the resonant region is con-
stant. ) Their solutions extend over much longer
times than in earlier treatments and show that
only for q R 3 does the wave damp at a constant
rate yr, for q&O. VV the damping rate decreases
monotonically with time from its initial value y~,
while for q &O.VV the amplitude, after several os-
cillations, becomes constant with time, its actual
value depending on the px'6else value of g. 06i aDd

wanson'2 have also very recently obtained self-
consistent equilibrium solutions which appear to
be similar to those of Sugihara and Kamimura.

The only published experimental data relevant
to all this theoretical work are those by Malmberg
and Wharton, who observed spatial amplitude
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osciQations for large yo, in qualitative agreement
with O'Neil's theory modified to the spatial situa-
tlOD.

In thi. s Letter we report: measurements of the
spatial damping of an electron plasma wave,
which show in detail the transition from linear
Landau damping to oscillatory behavior, and
which are well described by the results of Sugi-
hara and Kamimura~o for the range of amplitudes
below that at which sidebands appear and begin
to extract significant energy from the original
wave.

Our experiments were performed using a ther-
mally ionized, collisionless, sodium plasma col-

mn described elsewhere ages in which the elec-
tron density was -2x107 cm with an essentially
one-dimensional Maxwellian velocity distribution
(T-2500'K), and whose linear dispersion proper-
ties have been well explored. "

Vfaves were launched at x=0 from a short, fine-
wire-probe antenna connected to the end of a
matched coaxial transmission line. Resulting
plasma. fluctuations were detected at positions x
between the transmitter and the cold end plate by
a similar probe matched to the plasma with a
high-input-lmpedRIlce ampllfler. Because of un-
certainty in the probe-plasma impedance, abso-
lute values of y', could be estimated to an accura-
cy + 2(P/0 although its relative values were known
more accurately (+ 2%). The spatial variation in
the amplitude y(x) of the plasma fluctuations was
x ecorded logarithmically using a very narrow-
band (A&v= 300 HE) rf receiver and an x-y record-
er. Phase velocities v ~ mere chosen so that
there were 3 to 5 Landau damping lengths includ-

k;x 4 w&/2n = 40.5HHz
~pe/2& = 37MHz

. IO

ed in the length of plasma used (50 cm). This al-
lowed the nonlinear behavior to develop sufficient-
ly fox it to be clearly distinguishable. Changes in
phase velocity due to nonlinear effects' were un-
detectable (& 1% for our conditions).

Figure 1 shows experimental points, taken from
traces similar to those shomn in Fig. 3, for the
relative amplitudes of waves of the same frequen-
cy but different initial amplitudes rpo, analyzed
and plotted in terms of the dimensionless quanti-
ties used in Ref. 10, i.e., log(y/yo) versus y„t
-=k,x (for weakly damped waves y„=0, &co/&0,
where 0; is the inverse damping lengthz ) with
parameter q. The experimental uncertainty in 4&

was +
2%%ug and that in &&a/80, determined from the

measured dispersion, was +5/g, so that with the
previously mentioned uncertainty in yo Q was
known absolutely to within + 1'. However, for
a fixed frequency, the relative values of q were
known to -1$. The results show very good agree-
ment with the theoretically predicted curves~9 for
q R0.45; in particular they demonstrate the mono-
tonic but nonexponential decrease in amplitude
for q &0.8 and a transition to periodic behavior
for q & 0.6. (The theory predicts an asymptotic
stationary amplitude $7+ —0.04+0 for g = O.VV.)
For q ~ 0.04, sidebands" could be detected above
the background noise level; this presumably ex-
plains the greater damping suffered by the larger-
amplitude waves than that predicted by the theory
(which does not consider the stability of the sys-
tem).

These effects can also be seen clearly in Fig.
2, which shows, for the same data as Fig. 1, the
attenuation suffered by a mave in traversing a
distance x= 44 cm (0~x= 4) as a function of yo
compared with the theory. Only for very small
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FIG, 1. Experimental data and theoretical curves
(Bef. 10) showing relative spatial amphtnde variations
for different initial amplitudes. 40=8,64 cm, k~ = 0.09
cm '.
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FIG. 2. Effect of different initial wave amplitudes on
attenuation.
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1Illtlal amplltlldes (pc ~ 0.1 mV) would 'tile n1ea-
surements agree with the linear theory, while
for qo&2 mV the attenuation exceeds that of the
nonlinear theory. The amplitude at which side-
bands were observed is indicated with an arrow.

To demonstrate that the observed departure
from linear Landau damping is caused by elec-
trons trapped in the potential wells of the wave
(ec,kc), the damping of the wave was mes, sured in
the presence of a second perturbing wave (&ut, )'t, ).
When the amplitudes of the two waves were com-
parable, the only time-invariant potential well in
which the electrons could be trapped traveled with
a phase velocity' (&uc -&u, )/(kc -kt), which was
well removed from v„.For such conditions the
amplitude variations due to trapped electrons are
expected to disappear. Experimental data illus-
trating this are given in Fig. 3 which shows (i) a
very small-amplitude wave (eye/ksT = 2x10 s)

exhibiting linear Landau damping, (ii) a larger-
amplitude wave (eye/ksT = 10 ), and (iii) the
same wave as in (ii) but propagating in the pre-
sence of a second perturbing wave, demonstrating
that the damping is the same as that of (i).

For a one-dimensional Maxwellian distribution,
the condition that the slope of the initial electron
dlstx'lbutlon function over the x'esonant region can
be regarded as constant can be expressed as
2eyo/ksT & [v v v r/(2v ~

-vr )], where v r = (21ssT/

k x
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FIG. 3. Raw experimental data showing spatial am-
plitude variation of (i) the wave (&0,40) with F0~0.4
mV; (ii) the wave (~0,40) with po 2.2 mV; and (iii) the
same wave as in (ii) but in the presence of the undamped
wave (~i, kt) launched at @=67 cm with amplitude =4
mV and propagating in the opposite direction to (rd 0, ko).
kg/ko = 2.4 & 10

m)" . For the conditions of Figs. 1 and 2 this in-
equality was never seriously violated: Thus the
observed initial Landau damping is to be expected.
Rapid, nonexponential, initial damping "was not
observed, and our experiments show that for
most laboratory conditions damping of this sort
would be obscured by other nonlinear effects, e..g. ,
the sideband instability. ~ Furthermore, at suf-
ficiently large amplitudes the decay of an elec-
tron wave either into a second electron wave and
an ion wave~ or into two other electron wave
modes would also lead to a damping rate ex-
ceeding yi. The spectrum was carefully checked
during these measurements to ensure that none
of these px'ocesses occurred.

Notice that for such measurements the plasma
column must have a very uniform axial density.
A variation of -1% along the column would change
the average linear damping length by —20% for
the conctltlons of Flg. I& this effect of iIQlomoge-
neity would obscure any change in the damping
caused by electron trapping.
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Critical Exponents for Long-Range Interactions
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Critical exponents for a d-dimensional system with an isotropic n-component order
parameter and long-range attractive interactions decaying as 1/rs+ (o & 0) are derived,
using the renormalization group approach, as power series in e = 2o -d & 0 (o & 2, fixed)
orb, o o —,Ms&0 (d fixed) and, separately, to order 1/n for slid and a ~2. For ~&Othe
exponents have fixed ("classical" ) values; when e =Zo = 0 fractional powers of ln(aT/T~)
appear; when a'& 2 the exponents assume their short-range values.

It has been recognized for some time that long- To present the result we define
range attractive interactions decaying, in d di-

20' —d and 60' —0' —2dqmensions, as (2)

—y(r)-J(r)-1/r"', o &0,

should lead to values for critical exponents dif-
fering from those appropriate to short-range in-
teractions' (decaying as e " ' or, see below,
o &2); furthermore, such forces can induce criti-
cal behavior in one- or two-dimensional systems
where it would otherwise be absent. ' These sur-
mises can be demonstrated analytically for all
d in the spherical model. ~ In addition, the be-
havior of the one-dimensional spin-& Ising model
has been studied by numerical extrapolation tech-
niques. 4 Despite the fundamental theoretical in-
terest of the problem, however, there are no
results for Heisenberg or XF models, and only
one other, isolated, numerical estimate for the
Ising model (for d = 2 and cr = 1)."

In this note' the critical exponents for general
d and o (&2) are derived for a system with an
isotropic, n-component order parameter, by
using the renormalization-group approach~ and,
the e-expansion and (1/n)-expansion techniques. ' "

1 n+2 e (n+2)(7n+20)
y n+8 o (n+8)'

and treat d as a continuous variable. ' " In the
"classical" regime e, ha &0 one finds, for all n,

r/=2-o, v=1/o, y=1.

On the borderline c =0, v= &d, these expressions
still apply but the correlation length and suscep-
tibility vary as

g(T)-t ~~(int ~)"'~~ and )((T)-t (lnt )"' (4)

where n' = (n+2)/(n+ 8) and t = (T - T,)/T, is the
reduced temperature deviation from critical.

In the nonclassical region ~, Aa &0 one obtains
for 0'(2

ri= 2 —v+ e'8(n, e; (2 —o)/e),

where for 0-2 we have

O(n, e; 0) =-,'(n+2)/(n+ 8)'+O(e),

although 8(n, e; tc) —0 as tc —~, so that for fixed
o'&2 the exponent g "sticks" at the classical val-
ue, 2- o; this has been verified to O(e') but
might well be true to all orders in ~. The sus-
ceptibility exponent for a &2 is given by

6(o) = o[t(1)—2e(2o)+4(o) l,
where g(z) is the logarithmic derivative of the gamma function, I'(z). In the range 0 &o &2, Q(o) is
well approximated by 3 --,'o . Expressions for other exponents follow from the standard scaling rela-
tions: y=(2 —q)v, etc. For fixed d the assumption of continuous dimensionality may be avoided by


