
VOL.UME 29, NUMBER 13 PHYSlCAI. RXVIZW I.aTTKRS 25 SEPTEMBER 1972

Anisotropic Interference of Three-Wave and Double Two-Wave Frequency Mixing in GaAsf
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It is shown that two-step, two-wave mixing makes a substantial contribution to the to-
tal three-wave mixing process in a noncentrosymmetric crystal. The efficiency of gen-
erating 2~&-u& was observed as a function of the difference frequency u& -u2, the elec-
tric polarization vector, and the propagation direction. This method allowed the deter-
mination of the t~e third-order susceptibility y~ &, jn both sign and magnitude, in terms
of [g "P

The frequency combination K& = 2(d& —(d2 18 1D-

t ti gf li pti b s 'tp it
the observation of third-order mixing under
phase-matched conditions. ' In a crystal of NaCl
structure, the frequency 2~, —~2 can only be gen-
erated by the electronic third-order nonlinearity

In the diamond structure, however, the
Raman nonlinearity may also contribute. As a
first step, the incident waves at x, and u, dx ive
the optical phonon mode at ~, —e,. This beats in
the second step, again with the wave at u„ to
create the output frequency 2~, —u, . An inter-
ference between the Raman nonlinearity, which
is resonant when m, —m, = ~» and the nonreso-
nant electronic nonlinearity y~'~ has been observed
ln diamond

For crystals in the zinc-blende stx'ucture, e.g.,
GRAs, additional contributions to the three-wave
DllxlQg 2R~ —(U2 must be coQsldel ed, BecRuse of
the lack of inversion symmetry the Haman modes
are simultaneously infrared active. The Raman
contri. bution will therefore split into two, with a
resonance at both the transverse and longitudinal
opticRl phonon fI'equeDcles. The 1Rck of Inver-
sion symmetry also implies that second-order
optical mixing is allowed. An electromagnetic
wave at the second harmonic 2v, can be gener-
ated, and it may beat again with +2 to produce a.

polarization at 2a, —m2. Additionally, second-or-
der mixing can generate R polariton wave at e,
—K, which may mix RgR1D with QP, to pIoduce 2(d,

This last process has previously been used
to observe the polariton momentum-matching con-
dition. 4

ID this experiment we have observed for the
first time the interference between the direct
three-wave mixing and the various two-step pro-
cesses which were described above. This allowed
us to measure the twice third-order electronic sus-
ceptibibty X'" in terms of [g'2I]', where g&2I is
the second-order electronic susceptibility. Fur-
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FIG. j.. The experimental configuration.

ther, it allowed us to extract the true value of the
anisotropy of the electronic susceptibility y~'~ in
GRAs. We anticipate that this quantity is of funda-
mental importance since it directly probes the
Rnisotropy of the electronic valence distribution
in these crystals.

Experiments were carried out in single crystals
of high-reslstlvlty GRAs. The nonlinearity of
conduction electrons could be ignored. ' Two syn-
chronized pulsed CO, lasers were used to pxovide
two linearly polarized waves at a number of fre-
quency pairs u, Rnd +2. The experimental setup
is shown in Fig. 1. The frequencies m» e» and
m, all lie in the transparent region of the crystal,
while the frequency AQP = (vj —(d2 was made to Rp-
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proach the optical phonon frequency ~ ~ from be-
low. The efficiency of generating ~, was observed
as a function of the directions of polarization and
propagation of the waves at ~, and ~,. This made
possible the separation of the direct contribution
X

') from the two-step processes X '. The ap-
parent observed nonlinear susceptibility is X,b,

'
= x'" + x").

Before presenting the general theoretical ex-
pressions, three especially simple geometries
will be considered first to illustrate the basic
physical ideas.

(1) The electric fields at &u, and cv, are parallel
to the cubic [100]direction. Only the xyz com-
ponent of the Raman and second-order optical
susceptibility tensors is nonvanishing in 43m sym-
metry. Therefore, two-step processes are ab-
sent in this geometry and ru, can only be created
by the direct third-order nonlinearity X„„„„~'1(cu„
cu„—v,). Since the coherence length 1j/(2k, —k,
-k,) is very long, the mixing process can be
quite efficient.

(2) The electric fields at &u, and &u, are pola-
rized along [110], while the waves propagate
along the [001]direction. Symmetry permits the
creation of a second-order nonlinear electric
polarization and vibration only in the longitudinal

Z(2', ) = ' —(exp[i2k, .r] —exp[ik(2ru, ) r]

direction [001]. No intermediate transverse elec-
tromagnetic or polariton waves are excited.
There are, however, two-step contributions from
longitudinal excitations. An intermediate longi-
tudinal optical phonon wave at e, —~, will be gen-
erated and will result in a Haman contribution
which is resonant at m~. In addition, there will
be a longitudinal electric fields at both ~, —e,
and at 2+,. The last contribution is given by

Z, (2(v,) = ' exp(2ik, .r).—4~a"'(2',)
E' 2(d~

All these intermediate excitations, when beating
again with the incident fields in the second step,
will interfere with the direct third-order contri-
bution &Xxxxx + Y Lyxy

(3) 3 (3)

(3) The electric fields at v, and ~, are again
polarized along [110], but the waves now propa-
gate along the face diagonal [ITO]. In this case,
symmetry decrees that the second-order nonlin-
ear electric polarization Z(') wi» be in the trans-
verse direction [001]. The accompanying trans-
verse optical phonon wave will produce a Baman
contribution. In addition a transverse second-
harmonic wave and a polariton wave will be gen-
erated. The second-harmonic wave, for example,
can be written as a sum of a driven and a free
wave:

where k(2+, ) is the propagation vector of the free wave. In the second step of the two-step process,
the field in (2) will beat against the incident wave at &u, to produce a third-order polarization at 2~,

The free-wave part of (2) together with the incident wave will be phase mismatched, and the cor-
responding two-step contribution will be negligible in our geometry, where all the k's are parallel. The
phase-matched situation is equivalent to polariton resonance, as discussed elsewhere. "

When, however, the driven part of (2) beats against the incident wave, then a polarization with a
pl'opRgRtloll vectol' 2k~ —k2 will be produced~ l.e.~ wltll tile SRIne propRgRti011 vectol' Rs ln 'tile dll'ect
three-wave mixing, and accordingly phase matched. Therefore, the second step of the two-step pro-
cess is always able to take full advantage of the phase matching of the direct process, even though ea,eh

step is individua11y badly mismatched. The same reasoning applies to the phase-mismatched interme-
diate polariton wave.

The total contribution to the three-wave mixing can be obtained by carrying to third order the itera. -
tive solution of the following three equations: the equation of motion of the phonon coordinate q,

M(q+rq+~ 2q) =e*z+—'n zz; (3)

the definition of the electric polarization,
I'=&e *q+x"'z+ rot zq+ q"'zz+ q&'&zzz. (4)

and Mamvell's equation,
1 8E 4&8Pv'z —v(v. E) ——c' 8t' c' Bt"

where the vector subscripts have been suppressed; n bru/ qsis the Raman coefficient, M the reduced
ionic mass, r the damping rate, N the molecular density, e* the effective charge, and X~'~ the pure
electronic ith-order susceptibility.
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The two-step contribution X
' to the three-wave mixing can be written

A A A

(&„~i —&2) -Z~p(&~&i&i .-&in~ &~g +&~nPPPp, -&~,i'&s~p&p~. ')~

where 0 is the unit vector in the propagation direction, and only the xyz components of the tensors A,
A', 8, and B' are nonvanishing. They are given by

~D( ) MD(, ) a- ) MD(,)' *" ~MD(, ) MD(, )

8„„'=V(Sn/~„)[X'"]', a„„"=(V —1)(8"/&„)[
where

~, —e ) Me*mr a(b, cv) c(2',)
e C &~' 2M&v r'){{'~' e(b, co) —e „' ~(2', ) —e(&u,)'

D(CO) =(d —((d& —him) —ll ((dz —(d2),

Here e, and e„are the low- and high-frequency
dielectric constants, respectively, and e(b,v) is
the dielectric constant at A~ from which the po-
lariton dispersion curve can be derived. The two-
step contribution X

' depends on y~' and n~, both
of which have been measured absolutely in GaAs. '
Therefore, by determining the relative magnitude
of the direct and the two-step contribution, it is
possible to calibrate the absolute value of the
third- order susceptibility.

In our experimental conditions, V (which is re-
lated to the coherence length for second-harmonic
generation) was an order of magnitude larger
than U (which is related to the coherence length
for polariton generation). Therefore, the tensors
I3 and B' were much larger than A and A'. Conse-
quently, our absolute calibration was sensitive
only to X~'~, the second-harmonic generation co-
efficient, and to the coherence length for second-
harmonic generation.

The coherence length9 is thought to be known to
2%; therefore, the main uncertainty"" is in X{' .
%e have used y,

' =2.7&10 ' esu. By measuring
the relative efficiency of 2~, —~, mixing for vari-
ous geometries, we obtain, for the purely elec-
tronic third- order nonlinear susceptibilities

)(,„„{')=(70+10%%uc)[)(„„{')]'=0.51x10 "esu,
5=){„,„,"&/)(, „{'&=0.53~10%,

X„„&'&=0.97xlo "esu.
For comparison we give our measured 5 in ger-
manium, "where the tyro-step contribution is ab-
sent:

5G, =0.52 a 2%.

We see that the ratio 6 hay the same value in
GaAs as in Ge. This resolves the paradoxical
difference" in sign of the anisotropy c= 1 —35
for these two compounds, which had been report-
ed' before the two-step contributions were recog-

nized. Since the ratio 5 reflects the band anj. so-
tropy, it would be interesting to see if this value
is a universal property of all covalent crystals
in the zine-blende and diamond structure.

In conclusion, we have shown that the double
two-wave mixing process via nonresonant, non-
phase-matched electronic second-harmonic gen-
eration can make a substantial contribution to the
three-wave mixing. The interference of this con-
tribution with the true third-order susceptibility
permits us to extract the magnitude and aniso-
tropy for the latter in GaAs. Substantial indirect
contributions of comparable relative magnitude
are expected to occur in many other IG-V and II-
VI compounds on the basis of standard (anharmon-
ic oscillator) models for the nonlinearities. The
relative importance depends on the numerical val-
ues of the nonresonant X~'~ and X

' and on the de-
gree of momentum mismatch for second-harmon-
ic generation in each substance. %e would em-
phasize here the importance of including two-
step processes whenever third-order nonlinear
optical effects are studied in noncentrosymmetric
crystals. For example, there will exist two-step
contributions in the Franz-Keldysh effect" and in
hvo-photon absorption" experiments.
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Electronic Density of States at Transition-Metal Surfaces
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A completely real-space solution of the tight-binding Hamiltonian has allowed a realis-
tic interpretation of ion-neutralization spectroscopy and some ultraviolet photoelectron
spectroscopy data in terms of the surface density of states at transition-metal surfaces.
The rms width of the d-band density of states decreases as the square root of the coor-
dination number of surface atoms. The extent to which this is observed depends on the
surface sensitivity of the experimental technique.

Recent experimental results of Eastman, ' using
ultraviolet photoelectron spectroscopic techniques
(UPS), show that with increasing energy of the in-
cident photon the rms width of the optical density
of states in ¹inarrows from —2.5 eV for 21.2-eV
photons to - 2.0 eV for 40.8-eV photons. Mea-
surements on Cr and Cu, but only for lower in-
cident photon energy, show a similar but less
marked narrowing for Cr, but no narrowing for
C . P bl hddataf e t al' t' p
troscopy (INS) from ¹iand Cu surfaces' show a
surfRce d-band density of stRtes consistent with
the same overall width as the bulk bands' but hav-
ing a single central peak and smaller rms width

[Fig. 1]. All these observations seem to us to be
explicable i.n terms of the surface sensitivity of
the experimental technique, and, in the case of
INS results, can be compared with calculations
performed to establish the effect of the surface
environment on the density of states, By the lat-
ter we mean the local4 density of states at the
surface X,(E), namely, the density of levels X(E)
weighted by the probability density lgi' of the
states of energy E at a surface atom.

The main qualitative effect, namely, the reduc-
tion in tIle rms width of the den8lty of 8tRtes Rt

the surface, can be understood simply in two ways.
Firstly, for tight-binding bands Cyrot-Lackmann'6
has shown that the second moment p, , of Jt,(E)
[or of X(E) in the bulk] is proportional to the num-

ber of nearest neighbors z. This is rigorously

0 (4)

l
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FIG, 1. The density of states, as measured by INS,
at the three principal surfaces of Ni from experimental
results of Hagstrum.

0 (t,2,3)
0

true for a tight-binding band of s states and ap-
proximately so for d bands. Thus the rms width
varies as Wz, where z = 7, 8„9for (110), (100),
and (111)surfaces on face-centered cubic metals,
compared with z = 12 in the bulk. Secondly we

have the behavior of X,(E) at the band maximum


