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The statistical distribution of the scattered light intensity is studied theoretically and
experimentally for systems where (N), the average number of particles in the scattering
volume, is small. An expression is obtained for the intensity distribution for the case
of a uniformly illuminated scattering volume and the moments are obtained for an arbi-
trary illumination profile. Calculated moments are compared with those measured for

dilute solutions of polystyrene spheres.

Study of the time dependence of the fluctuations
in the light intensity scattered from fluid sys-
tems has provided an important new experimental
tool for the study of the dynamics of molecular
motion.? In many cases, interpretation of these
intensity-fluctuation spectroscopy experiments
has rested on the assumption that the statistical
distribution of the amplitude of the scattered
field is Gaussian.® With the exception of some
turbulent systems,* questions concerning the va-
lidity of this Gaussian assumption have generally
been either ignored, disposed of by thermodynam-
ic fluctuation theory, or dealt with by reference
to the central-limit theorem. It is the purpose of
this paper to investigate the statistics for one
system where the Gaussian assumption breaks
down, namely when (N), the average number of
scatterers in the illuminated volume V, is small.
We present both a theoretical and experimental
study of the non-Gaussian regime and show that
measurement of the non-Gaussian statistics pro-
vides new and unique information (in this case,

a measure of the number density of scatterers).

The non-Gaussian nature of the field for a fi-
nite number of scatterers was pointed out by
Schaefer and Berne,® who showed that the corre-
lation function of the light intensity scattered
from a small number of macromolecular parti-
cles is not consistent with a Gaussian field prob-
ability distribution.® Moreover, they showed that
in the non-Gaussian limit ((N) ~1) a very slowly
decaying mode appears in the intensity correla-
tion function. This mode was identified with oc-
cupation-number fluctuations (changes in the to-
tal number of scatterers in the illuminated scat-
tering volume) and its characteristic time was
found to reflect the residence time of a particle
in the scattering volume (typically seconds for
macromolecular solutions). In contrast, the
characteristic time of the more familiar inter-
ference fluctuations is the time required for a
typical particle to move the wavelength of light

(typically milliseconds™?),

The total field scattered by a system of M
identical spherical particles is proportional to
a properly weighted sum of the phase shifts (at
the detector) introduced by each particle in the
scattering region,

M
ER,¢)= .Z}le (F)exp[iK®, F,)-T,()], (1)
i=
where R is the observation point, ¥,(¢) is the po-
sition of the ith particle at time ¢, e(T) is the am-
plitude of the field _Scattered by a particle when
at position T, and K is the scattering vector and
is a function of R and T;. For incident light of
wave vector K,, K =2K, sin(/2), where 6 is the
scattering angle. The theoretical problem is to
determine P(E), the probability of observing a
scattered field of amplitude E. If P(E) is known,
then P(I) < P(|E|?) follows directly. P(x), the
probability of observing n photocounts in a time
interval of length T, is the Poisson transform’
of P(I) in the limit that 7 is much less than any
characteristic time of the fluctuations.

The most direct approach to the solution of
P(E) is to realize that if the scattering volume is
large compared to 1/K3, then the sum in Eq. (1)
can be described by a two-dimensional “random?”
walk®®9 in the complex plane. If the scatterers
are independent, the angles between steps will
be random and the step length will be governed
by P(e), the probability distribution for the mag-
nitude of the scattered field from a single parti-
cle. e(r) and therefore P(e) will depend both on
the illumination profile and on the details of the
collection optics [e(r) can be measured by a study
of the dynamics of occupation number fluctuations
for systems under uniform motion®]. In the event
that there are many independent scatterers in
the illuminated region (many-step random walk8?®)
Eq. (1) leads to a Gaussian distribution for E.
Here one may correctly invoke the central-limit
theorem. If the particles are not independent,
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the angles between steps are correlated and the
Gaussian result does not necessarily follow even
for a large number of scatterers. As suggested
by Di Porto, Crosignani, and Bertolotti,* the
field is Gaussian in this case only if the correla-
tion range is small compared to the characteris-
tic linear dimension of the scattering volume.

If the scattering volume were uniformly illum-
inated, Eq. (1) would be described by a finite-
step walk with constant step length. This prob-
lem has been solved by Kluyver,!*!! and adapting
his work one obtains the intensity distribution®

P(1)=3 [ duud /D exp{(N)[Jo) - 11}, (2)

where J, is the Bessel function of order zero.'

Unfortunately, P(z) obtained from Eq. (2) will
not accurately describe experimental results re-
ported here because (a) the scattering volume is
not uniformly illuminated and (b) some spatial
and temporal averaging of the fluctuations is ex-
pected because of the finite detector area and
finite sampling interval. One is therefore forced
to a computer simulation of Eq. (1) or to a mo-
ment method. The moment method is particular-
ly appealing because one can identify (n(n — 1)

+(n-m+1)), the factorial moments of the mea-
surable P(n), with (™), the ordinary moments
of P(I).*2

Consider first of all the normalized intensity
moments, F,={I™)/{I)", for uniform illumina-
tion. These moments can be obtained by multiple
differentiation of the moments generating function!?
[Laplace transform of Eq. (2)] with the following
results:

E(N>' ZJ[ H(J')Z‘”(aj')] ! 3)

The summation over {a} in Eq. (3) is performed
subject to the conditions
m m

2ija;=m;  ia;=i. (4)
Ji=1 Jj =1
This result has also been obtained by Chen, Tar-
taglia, and Pusey!? by a method based on combin-
atorial analysis.
If the restrictions leading to Eq. (2) are lifted,
the moments can still be obtained by evaluating
the following expression:

(r™y=(1/TA)"[ (@t)" [ @R)"(|E (R, t)I2my,  (5)

where E(ﬁ, t) is given by Eq. (1). The integrals
in Eq. (5) represent the averages over the detec-
tor area and sampling interval. The angular
brackets represent an ensemble average. Eval-
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uating Eq. (5) for m >2 involves a tedious exer-
cise in term counting, but we have obtained the
normalized moments to fourth order. Only the
second and third moments are given here:

F, ={E4/p522} +1+8,7,,

~4(3 + 682 'T,)

(6)

Fg= p;:? 3 P'—'z
+1+38,7,+28,T,, )

where p is the number density of scatterers and
%, is a volume integral over e°(¥). The 7, are
c-fold time integrals over cyclic combinations of
the second-order field correlation function. §,
are surface integrals over cyclic combinations of
the two space-point field correlation function.?
The combination 8, =8 .7, is considered here to
be a measurable constant dependent only on geom-
etry and T. 8,’ is a new spatial factor™ which is
expressible in terms of the measurable §, in the
limit 8§, ~1, 8,'=(11-38,)/8+-++. Moments high-
er than the third involve complicated coherence
factors* and are too cumbersome to reproduce
here. Note that, for uniform illumination (£ o V)
and 8, =1, Eqgs. (6) and (7) reduce to Eq. (3). Al-
so if E o V and B, =0 then Egs. (6) and (7) reduce
to the moments of the Poisson occupation number
distribution.®

Experimental work consisted of measurement
of the photocount probability distribution® for
0.234-pm-diam polystyrene spheres in water so-
lution. The illumination profile was roughly
Gaussian in all three dimensions with a volume of
3x10° um?® within the 1/e points of the field pro-
file.

Apparatus used here was described by Pusey
et al.™ and consisted of a krypton ion laser (A
=5682 A) focused on the center of a 1X1 cm?
cuvette by a 3-cm focal-length lens. Collection
optics consisted of an imaging lens, aperture,
and slit. Diffraction at this slit determines the
illumination profile in the dimension parallel to
the incident beam. An ITT FW 130 photomultipli-
er was used as the detector. The photocount
probability was analyzed by a modified version
of the digital correlator described by Pusey et
al.'® Details of this device will be published else-
where. !4

Experiments were performed with two sampling
intervals, T7=5x10"2 and 5x107% sec. In the
former case, interference fluctuations are effec-
tively averaged so that 7, —0 in Eqgs. (6) and (7).
In the latter experiments, the sample cell was
translated transverse to the incident beam at a
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FIG. 1. Factorial moments of photocount distribu-
tions. Triangles, T=5X10"° sec; circles, T=5x10"2
sec; solid lines, calculated moments for Gaussian il-
lumination profile; dashed line, calculated moments
for uniform illumination.

rate of about 500 um/sec in order to reduce the
time constant of occupation-number fluctuations.
In both cases the actual magnitude of the coher-
ence factors was measured through the factorial
moments of the photocount distributions in the
Gaussian limit (p large), with the result that
Basas—0-754, 0.65, 0.56, 0.48 for T=5X%10"° sec
and B,3,5=0.025, 0, 0, 0 for T=5X10"2 sec

The measured factorial moments for a sample
with about 3 particles in the illuminated volume
are shown in Fig. 1. The moments calculated
from Eqgs. (6) and (7) are also plotted. These mo-
ments were calculated assuming a Gaussian il-
lumination profile. In both cases, the concentra-
tion was taken as 3.37 particles within the 1/¢
points of the field profile. This value is consis-
tent with both measured second moments. For
comparison, moments calculated assuming uni-
form illumination are also plotted for the 7=5
x1072-gec data. These are just the moments of
a Poisson distribution with a mean of 3.1 (ob-
tained by fitting the second moment).

Figure 1 shows that theory presented here pro-
vides a very good discription of the data for the
long-interval experiments, while errors of the
order of 5% occur in the third moment for the
short-interval experiment. These discrepancies
arise because of errors in the measured 8, which
were measured in a different sample to an ac-
curacy of no better than 3%.

Experiments were also performed at (N) ~1
and 8 once again excellent agreement was obtained
for the long-interval experiment with discrepan-
cies of the order of 5% arising in the third mo-
ment for the short-interval case. For the long-

interval case, the number density obtained from
the second moment was found to scale with the
scattered intensity within experimental error
while discrepancies of the order of 15% arose for
the short-interval case. These results indicate
that the statistics of the scattered light provide

a means to determine the number density of mac-
romolecular solutions, particularly if 8, -~ 0 or
B, 1.
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