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Coexistence Curve of Sulfur Hexafluoridee
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The coexistence curve of sulfur hexaGUoride has been determined by interferometric
measurements for the temperature range 10 5 &(T, T)/-T~& 10 . The refractive index
difference u, -u„ is fitted by a power law. The difference Es is proportional to (&T),
where p=0.846+0.001 for the temperature range 10 2&(T, -T)/T, &.10 '. Th. e exponent
P decreases to 0.999 + 0.008 as (T,—T)/T~ decreases to the lower limit-of the data at
yp- 5

~

Interest in phase transitions has increased in
recent years. The critical behavior of a simple
fluid is not completely understood despite much

theoretical and experimental investigation. This
paper reports research investigating the tempera-
ture dependence of the liquid-vapor coexistence
curve of sulfur hexafluoride by measurements of
the refractive index difference between the liquid
and vapor.

The compressibility of a pure fluid diverges
near the critical point, resulting in a large den-
sity variation near the critical density due to
Earth s gravitational field. The fluid is com-
pressed under its own weight, giving rise to a
large density variation with height in a sample of
fluid. Several optical techniques have been used
to study static properties of a fluid near its criti-
cal point. ' '

The coexistence curve of sulfur hexafluoride
has been determined by measurements of the
Fraunhofer diffraction pattern produced by a thin
slab of fluid near its critical density. "A laser
beam, rendered uniphase and collimated by a
beam-expanding telescope and pinhole filter, tra-
verses a sample vessel and produces a Fraunhof-
er diffraction pattern in the focal plane of a lens.
The sample vessel has plane parallel windows

and is filled with SF, such that its average density
is near the critical density. If the temperature
is maintained slightly above the critical tempera-
ture, a large density variation with height results
due to the gravitational field. A sigmoid density
distribution is obtained with the density at the
bottom of the cell being greater than critical and

the density at the top being less than the critical
density. The density and index of refraction are
related by the Lorentz-Lorenz relation. There-
fore, the refractive index has a sigmoid distribu-
tion.

The Fraunhofer diffraction pattern is easily un-

derstood. In the absence of any density variation

in the cell, the laser beam is focused to a point
in the focal plane of the lens. In the presence of
density gradients in the cell, light is refracted as
it traverses the cell and is not focused to the
same point as in the case of uniform density in
the cell. A ray traversing the sample vessel
through the region where the density gradient is
maximum is refracted through some maximum
angle and is focused to a point at some maximum
distance from the zero-angle point in the focal
plane. Light rays traversing the cell where the
gradient is less than the maximum are refracted
through smaller angles. Consider two rays, one
traversing above the maximum gradient region
and one below, but traversing regions where the
gradients are the same. These two rays are re-
fracted through the same angle and are focused
to the same position in the focal plane of the lens.
The two rays have traversed regions of the cell
where the gradients are equal, but where the op-
tical thicknesses are not equal. In general, there
is a phase difference between them. It is easy to
see that the Fraunhofer pattern will exhibit maxi-
ma and minima. The most refracted maximum
is due to light traversing the maximum gradient
region; the most refracted minimum is due to
rays differing by one-balf wavelength, etc. ; and

the portion of the pattern nearest zero angle is
due to light traversing the top and bottom of the
sample cell.

A similar Fraunhofer pattern is observed if the
sample is maintained at a temperature slightly
below critical. In this case, however, there is
an additional phase difference due to the liquid-
vapor density difference at the meniscus. If the
Fraunhofer pattern is recorded continually while
the temperature is slowly decreased, the most
refracted minima in the pattern are observed to
diverge to "infinite" angle as the liquid-vapor
density difference increases. A kymograph can
be made by slowly transporting film across the
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FIG. 1. Log-log plot of refractive index difference
versus reduced temperature.
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FIG. 2. Sensitive log-log plot of refractive index dif-
ference versus reduced temperature. The ma)or tem-
perature dependence has been divided out, yielding a
sensitive log-log plot.

focal plane while the temperature is swept. The
liquid-vapor difference can be obtained by study-
ing the "vanishing" of the minima as a function
of temperature. The same effect is observed if
the temperature is swept in the opposite direc-
tion; minima are observed to form in the Fraun-
hofer pattern as the temperature is increased.
This procedure has been used to make measure-
ments down to temperatures of 40' below the cri-
tical temperature. In order to eliminate any non-
equilibrium effects due to temperature sweeping,
it is desirable to sweep temperature in steps.
The data reported here have been obtained by
this sweep-stop procedure. The stopping period
is 30 min for temperatures far from critical and
is several hours for temperatures within 0.01
deg of the critical temperature.

The results of studies of sulfur hexafluoride
are presented in the figures. Figure i is a log-
log plot of the refractive index difference between
liquid and vapor and reduced temperature (T, —T)/
T,. Temperatures are measured by a Dymec
quartz-crystal thermomet|, r and independently
with a thermistor. The critical temperature is
obtained by assuming that the refractive index
difference is proportional to temperature,

&n~(T, -T)s,
choosing a trial P, plotting b,n" versus T, and
extrapolating the data to 4n = 0. This trial T, is
then used for plotting logan versus log(T, —T),
and a second trial P is obtained from the slope
of this graph. The procedure is repeated as

many times as necessary. It is not a difficult
procedure because the range of possible T, is
small; the temperature at which the smallest 4n
is measured is only a few millidegrees below the
temperature at which definitely supercritical
Fraunhofer patterns are observed. The uncer-
tainty in T, is +0.0002 K. The thermometers
have not been calibrated with international stan-
dards; an absolute determination of T, is not pos-
sible.

A "straight" line is observed in Fig. l. In or-
der to make the plot more sensitive, T,(b.n)'/b. T
versus (hT)/T, curves are graphed on a log-log
scale in Fig. 2. The major part of the exponent
is thus divided out and the plot is very sensitive.
If hg were proportional to AT'", the data in Fig.
2 would lie in a horizontal line. The slope of any
line in this graph corresponds to P being different
from 3. An "exponent scale" is illustrated.

No error bars have been plotted with the data.
The points at the right of the graph are insensi-
tive to errors in measurement, measurements
of temperature, and choice of T,. The effect of
these errors becomes greater as T, —T decreas-
es. The scatter of the points is a good illustra-
tion of the size of error bars on the points.

The value of P for the temperature range great-
er than 10 ' is 0.346 ~0.001. The value of p de-
creases as the critical temperature'is 'approached.
There is some indication that P increases for T/
T, & 10 ', but this possibility will be neglected
here because of the limitations of the data. A fit
of the data for (T, T)/T, &3x10 s y-ields p=0.339

84i
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FIG, 3. Sensitive log-log plot of data reduced with
the aid of the Lorentz-Lorenz relation.

*0.002. The value of P =0.339 agrees with the
value of P for xenon in the temperature range
less than 3 F10 ' K.' The la,rger value of 0.346
is less than the value of 0.355 for xenon in the
corresponding temperature range. " A good fit
to the xenon coexistence curve has recently been
obtained by Estler by fitting with a power series
in (b,T)s.' A fit to the SF, data of the form

an =A(aT) 6'+g(aT) 6'

yields a value of p2=0.75+0.10. Theoretical in-
vestigation of the form of the higher-order terms
would be valuable for fitting these data.

Figure 3 is essentially the same as Fig. 2, ex-
cept the Lorentz-Lorenz relation

(n' -1)/(n' 2+) = Lp,

has been used to relate the data to a density dif-
ference. The Lorentz-I orenz coefficient L is
nearly constant. In order to relate 4n to 4p, it
is possible to expand the relation in a power se-
ries about n, and p, , or if n, +n„ is known as
well as n, -n„, it is possible to calculate the quan-
tities L, p, and L„p„. The latter can be carried
out easily if n, is known and n, +n„as a function
of temperature is known. The quantities n, and

n&+n„need be known to somewhat less precision
than n& -n„ in order to use the Lorentz-Lorenz
relation to calculate L, p, and L„p„separately.
These quantities have been measured in this lab-
oratory. 7 The value of n, for sulfur hexafluoride
is 1.093 +0.002.

Figure 3 illustrates a sensitive plot of the quan-

If the Lorentz-Lorenz coefficient is constant,
then Fig. 3 is a sensitive plot of (p, —p„)/p, .
There have been studies indicating a variation
in L, but the density dependence is small. It
seems that the variation in L is not enough to ac-
count for the shape of the coexistence curve be-
ing other than a single power law.

The density information plotted in Fig. 3 has
been obtained with the Lorentz-Lorenz relation
using data from Ref. 7 for the coexistence-curve
diameter. The data in Ref. 7 were fitted with a
diameter —'. (n, -n„) = n, + 0 000.223(T, —T). Any
form for the temperature dependence of the diam-
eter (compatible with the data) leads to a negligi-
ble change in Fig. 3. It has been called to the
attention of the authors that the data can be com-
pared with that of Benedek et al. e In order to
compare the data of Fig. 3 with the preliminary
data reported by Benedek et al. , it is useful to
approximate the data of Fig. 3 by an equation.
A least-squares fit gives (p, —p„)/p, = (3.66*0.08)
x (hT/T, )o'4" for T/T, & 7 x10 ', and (3.5+ 0.1)
x(AT/T, ) ' for T/T, & 5x10 s. The uncertainty
in the coefficient is due to the uncertainty in n,
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