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If one assumes that 4 c'E2 f)c r in a sphericaQy sym-
metrical well about a nodal point of the fieM, then the
mean value of 4 in a sphere of radius x~ can readily be
shown to be ~4~, where C~ is the quasipotenti. al at r~.
Since the energy gain per collision can be taken to be
twice this mean energy, the ratio of mean energy after
a coOision to that befox'e is ~i. Thus, the number of
collisions necessary for an electron to have its energy
increased from an initial value uo to a value C~ is n
= (ln(cs/us)i/[ln(Y)]. ,For u0=1 eV and 4@=15eV, n
=3.6~4.
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%e describe a hydromagnetic dynamo utilizing Bernard convection between rotating par-
allel planes. The model is based upon an asymptotic expansion in two spatial scales val-
id for large Taylor number.

It has long been believed that thermal convec-
tion provides a plausible thermodynamic basis
for a homogeneous dynamo effect, that is, for the
spontaneous amplification of magnetic energy
within an isolated volume of conducting fluid. '"
In this Letter we consider a hydromagnetic dyna-
mo model based upon this hypothesis. The model
utilizes a magnetohydrodynan ic Boussinesq fluid
with constant properties, confined between stress-
free, perfectly conducting, isothermal planes s

The system rotates about the vertical z
axis with constant angular velocity. If the mag-
netic field is zero, this is the classical Benard
problem with rotation. In that case it is well
known that for large Taylor number T =4~ L v

and fixed Prandtl number m '&1, the critical val-
ue of the Rayleigh number R =nPL'{xv) ' is of or-
der &"', the most unstable horizontal wavelengths
of the convection pattern being of order T "'L.'
Accordingly, we set s = l /L =T '~', with l the hor-
izontal scale, and suppose that e «1, s'R =-B{e)-1. We are then able to use the multiple-scale
theory of spatially periodic kinematic dynamos
to study the regenerative effect of the flow. ' lf
convection ensues as a pattern of two or more
nonparallel systems of rolls, the motion is a per-
iodic dynamo of degree two with respect to z-de-
pendent dynamo waves. Consequently, we require
the magnetic Reynolds number of the rolls to be
of order &"', and take the unit of speed to be
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gL 'e '~' (where q is the magnetic diffusivity).
Expansions then proceed in powers of s"' (or
T '~"). We take qt&

' to be fixed and of order 1.
The vertical velocity component has the form

(we now use dimensionless variables)

xo =Q„k(z, t, k) exp(ik ~ x/e),

where K is a fixed symmetric set of horizontal
wave-number vectors measux'ed in units of l '.
We refer to the convection field corresponding to
two conjugate terms of (1) as a roll system, or
simply a roll. If we set tu=k(t, k) sinwz, the induc-
tion equation for the horizontal mean dynamo
wave (B,(z, t), B,(z, t), 0) has the e limit

BBg 8 828,' + 2n'A —[sin(2' )M;; B~]—,* = 0;88 8$

M;~= , Ql~~(t, k)l',
l 1 12

o. , =(2k'A) 'P (~ 0 /~')l~(f, k)l',

where time is in units of the magnetic diffusion
time 7'=I'q '. We require that &B,jsz vanish at
z =0, 1 and that the vertical mean of 8; vanish.
The eigenvalues A corresponding to sta, tionary
solutions are then zeros of the Bessel function Jo
(A;„=2.405). However, the minimum eigenvalue
of oscillatory modes [proportional to exp(-i&et)]
is A, =1.5974 with u&,/w'=1. 3936. Hence, regard-
ed simply as a kinematic dynamo, the most easily
excited magnetic modes are oscillatory.

We expect dynamo action on a weak seed mag-
netic field when the initial convection is sufficient-
ly vigorous and irregular. Eventually, however,

the magnetic stresses cannot be neglected, and it
is then not clear that the requisite structure will
persist indefinitely. Here, as in the nonmagnetic
problem, the ultimate configuration is presum-
ably parametrized by (R —R,)/R, =5(e), where R,
=k'+ (w/k)' is the asymptotic critical value for
stationary convection at a wave number A. The
Hartmann number M(e) = BOI-(ppvq) ' measures
the intensity of the generated field, and there are
three distinct nominal parameter orderings: (i)
weak field, 5-e, M-1; (ii) intermediate field,
5-e, M —e '~'; and (iii) strong field, 5-&'M'
«1, cM' » 1. The ratio of magnetic to kinetic en-
ergy density in these three cases is of order &,

1, and cM', respectively. In the weak-field limit
the flow is geostrophic at the lowest (order 1) lev-
el, and is detex mined recursively by solving an
inhomogeneous form of the classical Benard equa-
tions. The weak-field equations given below are
then obtRined Rs R solvRbillty condition on the
Benard problem at the &' level. The first nonlin-
ear effect is of order e', and is due to the re-
duced bouyancy associated with the first perturba-
tion of the mean temperature; this perturbation
is measured in units pI and has the form e(z, t)
=6(t) sin2m. Setting 5/e = 5 = 5 ' + eM'5 ' + ~ ~ ~

and 0/e =6"'+~6"'+~ ~ ~, there results 5
= —wO "~ = (q/z)'A = const. For rolls of fixed wave
number k the kinetic energy of the convection is
proportional to A and is therefore fixed by 5~

(This can also be interpreted as a constraint on
the convective transport of heat between the two
isothermal planes, the Nusselt number here be-
ing %= 1 —2neO ' + ~ ~ ~ . ) On this energy surface
the functions'(t, k) are determined (with k now

fixed) by

dk (t, k)/dt+ (lu(t, k)l Q„[&(k',k) —cc(k', k)]/s (t, k) = o,

where A and C are skew in their arguments, and
Ic is a positive constant. The coupling with B; is

through C:

m, , =(g'+k') ' f (w' cowsz -k'sin'mz)B~B&«

Equations (1)—(4) together with the energy con-
straint detexmine B; and m in the weak-field limit.
The number of terms permitted in (1) is of course
arbitrary, but rolls in at least two directions are
needed to make M in (2) of rank 2. The disappear-
ance of all rolls but one leads to decay of &; and

the dynamo fails. A promising example is dis-
cussed below.

The intermediate-field limit gives equations
connecting the& (f, k), 8 '~(t), and A(t) at the e'
level:

[5+m;,.k; k, + w6~'~]k(t, k) =0,

8O"'/ef+4~qz 'A+4~'zri 'O"&=0.

(5a)

(5b)

Inertial response of velocity can occur here only
on a fast time scale «, but A now evolves on the
diffusion scale 7. The strong-field limit repro-
duces (5a) without vO~ ~, and (5b) is disregarded.

The & limit of stationary equilibria in the strogg-
field xegime can be studied for eM small but fi-
nite. It follows from (5a) that for given B, the
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tions can be satisfied fox no more than three rolls
in general (unless 5 is assigned a dependence up-
on k/tt). Vanishing of one bracketed factor in the
equations can be satisfied for no more than three
rolls in general (unless 5 is assigned a depen-
dence upon k/k). Vanishing of one bracketed fac-
tor in the equations (5a) gives one constraint on
B„and the condition that this constraint be satis-
fied for all time determines in principle one func-
tion of time. in se. The situation in this case
seems therefore to be analogous to Taylor's con-
dition for spherical dynamos. ' For the special
case of two orthogonal rolls, a strai. ghtforward
bifurcation analysis establishes the existence of
stRtlonRry equilibria provided thRt A ls neR1' R

root of J~ and that the mean of B& vanishes to or-
der (eM).' If the latter condition is not satisfied,
it can be shown by formal perturbation that non-
stationary solutions exist, oscillating on the slow
time v. (6M) '. These solutions, stationary and
nonstationary, are, how&ever, believed to be over-
stable on the diffusion ti.me because of the value
of A, noted previously.

The evolution of a weak field has not yet been
studied in detail, and it is not known whether or
not an intermediate field wiQ persist as an oscil-
lation having period O(&). To study two orthogo-
nal rolls in the weak-field limit, we set Ito(t,
k, ,,)I'=2(&&/rl)'5(o)(1+2v) in order to satisfy the
energy constraint, in which case (3) reduces to
the single equation

dv/dt+ [24(k„k,)+c(m22-m„)](c -v') = 0. (6)

We note from (6) that@-+ 2 if m»=m»=0; i.e. ,
without the magnetic field the convection collapses
onto a single roll. %e suppose that e is near zero
(of order v, ), and that A —A, ™v„(o-=(-,'+v)'~'B,
+i(2+v)'I'B, - vo'~'. We also neglect L4 in (6).
Indeed, this term is indentically zero for a suit-
able choice of rolls with slightly different wave

numbers. However, the main justification for
this simplification in a preliminary calculation is
that the dynamical effect of the magnetic field is
thereby isolated. %e then find that, to lowest or-
der, (p=v, "'f(t*)y,(s)exp(-i(o, t), where t*=v, t
»nce»s pe»odic of pe»od ~, /«»owest »-
der, there is an effect on induction in (2) of order
v,"'. The terms of this order in (2) then give an
equatlo«or &(t *)= If I' of the form

Here the constant a is positive when k =k, = (~2')"'.
The sign of b (a constant representing the effect
of v) is that of A, —A. If b&0, we see that x-0
as t*-~ if x is initially ln the interval 0 &x &5/s,
and ~- as t*-~ if x is initially greater than
b/a or if A &A,. In the former case the dynamo
fails. In the latter case all that can be said is
that the field initially grows and persists for
many diffusion times. %e are unable to predict
in this example the behavior of the motion once
the magnetic field has grown to its nominal level
and M -1. If the weak-field limit admits magnet-
ic modes which grow indefinitely, the intermedi-
ate-field limit would presumably describe the sys-
tem once magnetic stresses dominate the effects
of advection, with fluctuations of the kinetic ener-
gy occurring on R diffusion time.
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