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A direct operational approach to the solution of the Schrodinger equation has led to an
iterative nonperturbative method for its solution. The method, when applied to the Ma-
thieu equation and the anharmonic-oscillator equation, is superior to the perturbation-
iteration method and to Rayieigh-Schrodinger perturbation theory both in terms of rate
of convergence and range of coupling constant allowed.

l'n the application of the linked-cluster many-
body perturbation theory (LCMBPT) to atoms'
one must evaluate ever more topologically com-
plicated diagrams. Moreover, the theory is not
especially rapidly convergent if precise results
are desired. In addition, special techniques must
be employed to sum to infinite order certain class-
es of diagrams. Thus, it mould be of advantage
for practical calculations to develop a formalism
which eliminates many of the difficulties with
LCMBPT, but which retains as many of the vir-
tues of LCMBPT as possible. This Letter pre-
sents a summary of a contribution to this endeav-
or. The method reported has as its asymptotic
expansion the Rayleigh-Schrodinger perturbation
theory (RSPT), but converges for the case of the
anharmonic oscillator in three iterations where
RSPT diverges. The method provides more rap-
idly convergent results for the Mathieu equation
than. perturbative approaches.

%e begin by considering the motivation which
led to the continued-fraction method (CFM) which

has provided these results. Consider the time-
independent Schrodinger equation H l n) = E l n)
for any state I n); assumed for simplicity to be
nondegenerate and not necessarily the ground
state. A splitting of the Hamiltonian is assumed
of the form H H, +IV with H, l n), =E„oln)o. From
here on me mill suppress the o. subscripts and the
explicit indication of the dependence of the pertur-
bation(A. V) on the coupling constant, X. Let P,
= l n) „(n I and Q, = I -Po with P,' = P, snd Pot = Po
be projection operators onto and out of the space
spanned by I n), . Then with the introduction of
the reduced resolvent To(E) =Q,j(E -Ho), we can
obtain the reaction operator (or transition oper-
ator) t(E) for the state l n), whose matrix ele-
ments give the level shifts

E-E'=.( It(E)in&.,

mhere

t (E) = V+ VTO(E)t(E).

The Lippman-Schwinger equation (2) 2 may be
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solved for t(E), yielding
f (Z) = (I - Vr, ) -'V = V(1 -T,V)

-'

Vl/2(1 Vl/2T Vl/2) l Vl/8
0

Then, using the Cauchy formula, Eq. (1) may be
transformed to

1 t( )P„d

This equation will be satisfied if h satisfies

1 " t(e)P, d~
2Wi e -Z'-II ' (5)

Since & =E'+h merely shifts the denominator of
T,(e,) from e„h will exist anywhere in virtue of
Eq. (5) except at those points where A. is an eigen-
value A.„of the operator 1 —%TO(Z'+h)v. Thus, it
is seen that II will exist whenever t(E +h„) exists,
where h~ is an eigenvalue of h.

Now if in Eq. (5) we were dealing only with sca-
lar functions instead of noncommuting operators,
t(e) would have the form of a linear fractional
transformation. This would lead to a continued-
fraction expansion for h. In our case, even though
it can be shown that t(e) may be expressed as a
composition of two successive opexator-valued
lineax fractional transformations, thus leading to
a continued fraction for operators, a simpler
method may be employed. %e merely note that a
continued-fraction expansion can also be obtained
from developing the continued-fraction solution to
the quadratic equation

(6)

Our task is then to obtain the operators 8 and A

from which we can find the n+ est approximant
from the nth via the recursion relation

fI„„-(1+Bh„) 'A, ho=y,

which has the continued-fx action form

a=[1+a(1+a" ) '~]-'~, I,=x.

An equation of the required form of Eq. (6) lead-
ing to the determination of the operators 8 and A.

may be obtained using the methods developed by

Lowdin» Block and Des Clolzeaux» and others.
The equation is obtained as follows: Consider

(ff -E -e)lo') = o,

The contour includes the eigenvalue E. U we
then introduce an equivalent operator 8 such that
E IQ)0 = (8 +I/) l /I)0» then Eq. (4) IIlay be wrjtten as

,(el E -Zo- .(&," —„in), =O.
1 "t(e)P„de

where E + e =E and e =E' is the eigenvalue asso-
ciated with the unperturbed eigenfunction ln),
whose adiabatic transform is t n) .In Eq. (8) if we

multiply on the left-hand side by Po, we obtain

P,vie) =Z in&„

since P,(JI-e) =P,(&~ —e+ V) =P,v. The normal-
ization of I /I) is chosen so that P, t n) = I /I), . By
multiplying Eq. (9) by the operator U (assumed
existent), which is defined to satisfy

Ui n)0 =
i n), UPO = U,

we then obtain Uvl n) =E"I o.). When this relation
is substituted into Eq. (8), we obtain

(P —e —Uv)in) =0.

Because of the first relation of Eq. (10), we have
for the representation of U

U=l &.& I. (12)

Therefore, multiplying on the right-hand side of
Eq. (11)by, (o I, we obtain

(e -Ho)U= VU —UVU.

Since U =. (P, + Q, )U and POU = Po, we obtain

Hence

Q0U = To(e ) (VU —UVU).

Equation (14) may be rewritten with tile help of
the definition @ —~~ as

t(e)TO(e)V '»/'+h =t(e)P, .

It can be shown that the operator h appearing in

Eq. (15) is the same one as in Eq. (5).' Clearly
Eq. (15) is of the desired form. A proof of con-
vergence of the recursive process in Eq. (4) for
Eq. (15) can be obtained by a modification of a
proof of McFarland. ' The following criteria. is ob-
tained as. a by-product of the proof when the ini-
tial approximation is II, =f (e)P,:

ii[1 —V&.(e)l 'll'IIVT. (e)ll &x~. (16)

In relation (16) II ~ .. tl denotes the norm of the lin-
ear operator appearing between the pair of verti-
cal double bars. The norm of the operator is de-
fined relative to the norm of a vector in the Hil-
bert space by using the inner product defined on
the space in the following manner: I et lu) and

I v) be the vectors in the space, then the norm of

Bi2
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TABLE I. Mathieu-equation comparison of HSPT,
PI, and CFM level-shift results for A, =2.0 (IIXVII/d=~2)

for the ground state, The exact result by eighth-order
CPM is 0.878284.

TABLE D. Mathieu-equati. on comparison of HSPT,
PI, and CFM level-shift results for A =4.0 (II XVII/4 =1)
for the ground state. The exact result by eighth-order
CPM is 1.54486.

Order

0.8788
0.8788
0.8782

0.8833
0.8920
0.8737

0.8750
0.8750
0.8784

1.5552
1,5466
1,5452

1.0000
1.7778
1.1541

1.5000
1.5000
1.5547

a vector u = Ilull=—(ulu)'~'. I et I be a linear oper-
ator defined on some subspace of the Hilbert space,
then the norm of the operator I = II XII, defined
as the greatest lower bound of the non-negative
numbers C in the set 8, where the set 8= ((-'
II tu II = II v II

~ (:ilu II, for any vector lu) in the do-
main of the operator I-). Relation (16) then yields
the following two minimal regions of convergence:

0& II Vll /«3 —. 2v2

II Vll /d&3+2W2.

In the above V is the perturbation and d is the dis-
tance of isolation of the eigenvalue e from the
nearest different eigenvalue e' in the spectrum of
Ho. That ls, d = I 8 —8

It can be shown' that in the solution of Eq. (15)
via the recurrence given by Eq. (7), all discon-
nected diagrams cancel, leaving a result that de-
pends linearly upon tI1e number of particles N of
the system. A time-dependent version of the the-
ory has been constructed and the appllcatlon of
the method to potential scattering has been con-
sidered. The application of CFM to the calcula-
tion of the nonrelativistic bound-state spectrum
of fluorine has begun. The extension of the meth-
od to the degenerate case has been completed, as
has been the considerations necessary to calcu-
late the expectation values of other operators than
the level-shift operator h.

In order to indicate the possible usefulness of
the method we present a comparison of CPM,
RSPT, and perturbation-iteration (PI) results for
various coupling constants for the Mathieu equa-
tion (H, = —d'/d8', A. V =A. cos'8). Formulas for
the RSPT and PI results can be found in Morse
and Feshbach. ' We also present some results on
the anharmonic-oscillator problem (H, = —d'/dx'
+x', A. V =Ax'). All calculations were done in sig-
gle precision using 20&20 matrices to represent
the operators involved except for the anharmonic-

TABLE III. Mathieu-equation comparison of HSPT,
PI, and CFM level-shift results for A = 2.0 (II &Vll/4 =$)
for the sixth excited state (&0~ = 30.0). All methods are
rapidly convergent

HSPT Order

1.008 55
1.003 57

1.000 00
1.003 56

1.000 00
1.003 57

oscillator results where 10x10 matrices were
used. No attempt has been made to be especially
numerically accurate. The aim has been merely
to show that the method works. In passing, it is
interesting to note that the Feenberg perturbation
theory' in the case of the Mathieu equation yields
a continued fraction which can also be obtained
from the PI method using Pade approximants to
the PI series. The continued fraction, however,
is different from the one used in the CFM.

In the case of the Mathieu equation, from Ta-
bles I and II for the ground state, and III and IV
for the sixth excited state, we see that RSPT is
better than the PI method for the cases shown,
and that CFM gives better results than either
RBPT or the PI method. For the anharmonic os-
cillator, CFM gives rapid convergence to correct
eigenvalues (see Table V). In the case of the an-
harmonic oscillator the proof of the convergence
for CFM, together with the proof of the asymp-
totic equivalence of the RSPT to CFM, gives an
alternate proof for the asymptotic convergence of
RSPT for the anharmonic oscillator. ' This does
not prove that RSPT converges though. A gener-
al point may be made in closing, that is, the lev-
el-shift operator h satisfies a quadratic equation;
hence, a perturbation theory or a data-fitting
method, such as the usual Pade method for this
problem, '0 may lead to excess computation if this
is not taken into account. '

The author would like to tilank tI1e members of
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TABLE IV. Mathieu-equation comparison of HSPT, PI, and CFM level-
shift results for X= 90.0 (IIXV II/d= &) for sixth excited state (Eo ——96.0).

Order PI CFM

Diverges Questionable
convergence

Converges to a solution
in the second Riemann
sheet which when trans-
formed to the first sheet
gives 15.8290

Upper bound~ CFM Lower bound

0.1
0.2
0.5
0.8
1.0

0.065 286
0.118293
0.241 957
0.338 096
0.393 371

0.065 285 5
0.118292 6
0.241 854 0
0.337 545 5
0.392 353 1

0,065 285
0.118292
0.241 811
0.337 397
0.392 131
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TABLE V. Anharmonic-oscillator comparison of
CFM level-shift results for the ground state with rigor-
ous upper and lower bounds given by Bazley and Fox
and by Reid. The first 41 terms of RSPT give a level
shift of approximate]y 10 (Ref. 10).
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We report a new type of counter based on the transition radiation from ultrarelativistic
charged particles. The efficiency of the "transition counter" depends almost linearly on
the Lorentz factor of the particle in the energy region covered and is over 80% for 2-
GeV electrons. Particles heavier than electrons in a 2-GeV unseparated beam are ef-
fectively rejected. A possible application of the counter at multihundred-GeV accelera-
tors is discussed.

In the ultrarelativistic region, where the parti-
cle velocities approach the velocity of light, con-
ventional Cherenkov and time-of-flight detectors
lose their effectiveness in particle identification.
It is important therefore to develop new methods

of particle identification based on effects which
do not approach a limit or "saturate" at very high
energies. The transition radiation, which is emit-
ted by a moving charge crossing the interface of
different media, ' and the intensity of which in the

814


