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It is shown that a relationship exists between the coefficient describing the infrared lat-
tice absorption. and the ionic contribution to the second-order electric susceptibility in a
polar noncentrosymmetric crystal. By analyzing the available data of the latter it is con-
cluded that two-phonon sidebands in the infrared absorption are due to the second-order
dipole moment in all the III-U compounds and to the third-order potential in ZnO and CdS.
Further, the magnitude of the integrated infrared absorption coefficient in a cubic homo-
polar IU-IU semiconductor is discussed.

The infrared spectra of polar crystals consist of broad maxima corresponding to the fundamental
phonon frequencies and somewhat weaker sidebands corresponding to combinations of two or three pho-
nons. ' The two-phonon infrared absorption responsible for the strongest of these sidebands is due to
two mechanisms usually referred to as the third-order potential" and the second-order dipole mo-
ment, ~' respectively. At frequencies near the fundamental infrared-active lattice resonance, cd2, one
expects on general grounds that the third-order potential is more important than the second-order di-
pole moment and is responsible for the broadening of the main absorption peak. For frequencies not
in the neighborhood of &ur no such a Priori argument can be given which allows one to ascertain the pre-
dominance of one mechanism over the other. Such knowledge, however, is of considerable interest for
the description of the infrared properties and phonon coupling in these solids and their amorphous
counterparts. Except for the general discussion of Szigeti, ' all attempts until now to account for these
subsidiary peaks have without exception explicitly or implicitly assemed that even there it is the third-
order potential that contributes predominantly, and the second-order dipole moment was neglected. "

Here we want to show for the first time that independent and conclusive evidence about the relative
magnitude of the two effects in crystals lacking a center of inversion can be obtained through an analy-
sis of the infrared dispersion of the second-order susceptibilities in such compounds. In this Letter
we use this relationship to discuss the origin of the two-phonon sidebands in the case of diatomic semi-
conducting compounds and we anticipate that both the theoretical values and the available experimental
data indicate that these sidebands in III-V cubic compounds are due to the second-order dipole moment.

In these compounds the two-phonon sidebands arise from combinations of the three acoustic and the
three optic modes. The latter are a doubly degenerate infrared- and Raman-active transverse mode

(T) of frequency ter and a longitudinal (L) of frequency v„. As a ruie the two-optic-mode combination
bands are well separated" from the optic-acoustic combination bands. In the following we shall con-
cern ourselves exclusive'y with the former.

In the high-temperature limit, using perturbation theory, the following formula was obtained for
&ue "(u;), the infrared energy loss per unit time:

w kT ~ (e (2) ez*4 z«.
36v ~'~ co co ~

" m co~' —c2

where o = (s, qJ (s labels the branch and q is the wave vector), er* is the transverse effective charge,
m the effective mass, and v the unit cell volume. In (1) the summation goes over all those pairs of
modes for which either v, +su, or &u, —&u, i is in the interval (cu, 5~). IVI{'~ and 4{'~ are the second-or-
der dipole moment and third-order potential coefficients defined through the power series in lattice co-
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ordinates Q, of the lattice dipole moment M(Q) and the potential energy e(Q), respectively;

M(Q) =-er*Qr+2 Q M„"Q,Q,

c(Q)=2 Z~.'Q.'+—Q @...-' Q.Q. Q. .(s)

The relative contribution of the two mechanisms in (1) is measured by the dimensionless quantity

e„., =-e, e..., '3n ~, m...(3) / 2 (2)

which, because of the flatness of the optic modes, can be replaced' by its value at the center of the
Brillouin zone,

(2)

Because of the presence of the resonant term Dr(v) = [1 —(v/mr)'] ' in (1), the third-order potential
predominates near co&. Away from ~&, however, neither the selection rules nor the temperature de-
pendence allow one to distinguish between the two mechanism:. . Further, since SM„.~'~[1+8, .Dr(ur)]
occurs squared in expression (1), the expression is insensitive to the absolute signs of the two coeffi-
cients M ') and 4 '), and, although it will vanish for a frequency +0 either above or below (oz depending
on whether 9,. is positive or negative, respectively, such a criterion is of little use in practice be-
cause of the lack of detailed and accurate phonon dispersion curves.

Yet the determination of the signs of these two coefficients and of 1+e„.clearly is sufficient to de-
termine which of the two mechanisms, M ' or 4(", is dominant. Such information can be directly ob-
tained from a study of the infrared behavior of the second-order susceptibility y~'~(v„v, ). This quan-
tity relates the Fourier component of the sum frequency of the induced polarization to the Fourier com-
ponents of two incident fields: P~~, ,~,~'" =)I'"(v„co,) ~ E(~,) ~ E(v, ), where the fields can be either lon-
gitudinal or transverse. In the Born-Oppenheimer approximation the expression for y

' for induced
transverse polarization at frequencies below the electronic transitions and above the elastic resonances
of the sample can be written'0"

X ~'~((u „(u,) = )t ~"~[1+ C rD r ((u, + (o, ) + C,D, (cu, ) + C, .D ((u, ) + C r, D r ((u, + (u, )D, ((u, )

+ C r, .Dr((o, + (u, )D,.((u, )+C„.D, ((u, )D, .((o,) + Cr„.Dr((u, + (u, )D, ((u, )D,.((u, )]q,q, ,

where s and s' stand for L- or T-optic modes, g~'- is the puxely electronic second-order susceptibil-
ity,

+- (ue Q

U

e, e, M„ (2)

2PPl v(d co gg g 'g

(3)

Tss 2~3~~ 2~ 2~ 2~ (2)~

with n, (' and e,* the Raman tensor and effective charge for the s mode, respectively.
where m, =l if s=l- and m, =0 if s=T.

We consider first the purely transverse case, s =s'=T, and we define M ' =M»", 4 "=4»~', C,
C, =Crr, CS=Crrz, , and 8=8rz-—C,/3C, . We see from (3) that

for cu„& „~,+co, & &or (mixing in the visible),
)f~'~ = ys~'~(1 +C, ) for e„e,+ &@, & er & &a, (electro-optic effect),
y~" =y~~'~(1+SC, + SC, +C,) for ~„v„&u,+&@,&u, r (microwave).

Hence by m asuring the magnitude and sign of
y
" in these three frequency regions the magni-

tudes and signs of y~~'~, C„and 3C, +C, = 3C,(1+8)
can be obtained and, as will be seen below, this
is sufficient to extract 1+e as well. Therefore
we present here an analysis of (1) in terms of
these quantities.

We assume that the valence electrons are locat-

ed on tetrahedral bonds which we assume to pos-
sess axial symmetry, and we describe them with
wave functions g = gv+Agz constructed" with sp'
Slater orbitals. The core electrons, on the other
hand, are assumed rigidly bound to the nuclei,
canceling part of their positive charge and leav-
ing positive charges 3e and 5e on sites III and V,
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TABLE I. Calculated values of C&, BC&+C&, and 6
= C3/sC~.

Compound
Calculated

pC2+C3
Expt.

QC2+C3 ~

InSb
InAS
InP
Gash
GaAS
GaP
AlSb

—0.66
—0.28
—0.14

—0.83
—0.37

0,15
0.22
0.23

0.85
0.27

—0.17
—0,12
—0.11
—0.16
—0,17
—0.15
—0.10

0.4~ 0.1
0.3+ 0.1

Hef. 16.

respectively.
For the lattice potential we assume that it can

be written in the form y =yi+pz, where y~
=a (Ze)'/R, y~=Be "i~, with Ze an apparent stat-
ic charge and B the strength and p the range of
the short-range forces; p is a measure of the ex-
tension of the electronic distribution around each
atom and ls taken as p ~ 2(f~ + Pv), whel e the

g; are the Slater coefficients of the Slater orbitals
used"'" to form g. In connection with the im-
posed axiality of the bonds, we neglect for the
moment noncentral forces; the latter are three-
body forces and act only beyond nearest neigh-
bors. No attempt is made here to derive all these
forces consistently from the electronic wave func-.
tions.

The calculation of the bond polarizabilities and

dipole moments and their derivatives was per-
formed"'" using the wave functions g while &ur'

and 4~') were calculated using standard lattice-
sum techniques. " The local field corrections
were taken into account in a semiempirical way
as in Ref. 13.

The calculated values of C„SC,+C„and 8
=C,/3C, are displayed in Table I along with the
existing experim ental values. The calculation
showed that e~* and g~~') have opposite signs;
ot ~') was found to be positive. Accordingly C,
is negative" for all compounds considered. M~')

was found to be positive while 4 ' was found to
be negative. The sign of the latter quantity is de-
termined by the sign of the short-range contribu-
tion, @~~3), to q~'). As was mentioned previous-
ly, in adopting this form for the potential we have
not taken explicitly into account intermediate-
range electrostatic forces, although part of them
are introduced through the local field corrections.
However, even if such forces were explicitly in-
cluded, one may assume that to a good approxi. -

motion the potential can again be separated into
two monotonic functions of the interionic distance
R, one increasing (attractive) and the other de-
creasing (repulsive) with R. Since 4~» arises
from energy changes, it will be dom. nated by the
most rapidly changing part of the potential and
this is more likely to be the shorter-range repul-
sive part. As a matter of fact, although the at-
tractive part will give by far the largest contribu-
tion to the cohesive energy, the first derivatives
of the two parts must cancel each other, as is re-
quired by the equilibrium condition, and ~~ mast
be positive, reflecting the fact that the repulsive
part changes more rapidly with distance than the
attractive part; one expects that the sam. trend
will be followed by the third-order derivatives;
accordingly 4"), and hence C„will be negative.

Qn the other hand C, was found to be positive.
The calculation show8 that 3C2+C~ 18 also posi-
tive, the same sign as C„ in agreemt. .nt with the
experimental data. " The experimental values,
then, favor the fact that the second-order dipole
moment is the dominant mechanism in the twe-
phonon sidebands in the III-V compounds.

When longitudinal phonons are involved in (I)
the pertinent quantities are given by" '"

jjf„,j»=~~»[I -(~,+~,,)C,/C, +~, ~,./C, ], (5a)

(5b)

an analogous expression for e»~, here K, = (&,'
—~r')/&ur'. Expressions (5a) and (5b) are gener-
alizations" to the nonlinear regime of the I yd-
d aneS hacTsllelerelatlons eg = 8 r /E' and (d g
= (&,/& )&u&'. Using the values of C; given in Ta-
ble I one can compute the coefficients (5a) and

(5b). The conclusion is again that the second-or-
der dipole moment is the dominant mechanism.

A sim.'.lar investigation for CdS and ZnO shows
that for these comoounds the anharmonic poten-
tial is the predominant mechanism.

In the past, quantitative arguments were giv-
en'8 supporting the assumotion that the third-
order potential is the dom..'.nant mechanism in III-
V compounds and in particular GaP. This was
based on the following: (a) The integrated absorp-
tion coefficient in the infrared, e' =(2/v)f[&" (v)/
a&]du for Si, which is due entirely to the second-
order moment [er*=0 in (I)], is at least an order
of magnitude smaller than that in GaP where both
M~» and 4~» contribute; and (b) it was assumed
that the same M~' processes contributed in GaP
as well as in Si. The latter however is not the
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case.
M'" arises exclusively from the distortion of

the electronic distribution by two phonons. Above,
it was calculated by assuming that the bonds pos-
sess axial symmetry, and hence the bond dipole
moment p has a single nonzero component, name-
ly, along the bond axis (& axis), or p = (O, O, P);
for a homopolar bond like Si-Si in silicon, P and
its derivatives and hence M ' vanish identically.
Actually, because of bond-bond interaction and
the different orientations of the two adjacent bond
triplets at the end points of each bond, a nonaxial-
ity and twisting of the bond electron distribution
is introduced resulting in small nonaxial compo-
nents to p [or p= (P„,P, ,P)] which are nonzero
even for the homopolar bond where P =0; they
give rise to a nonzero Ms~" in Si and to an addi-
tional contribution I„,' in GaP so that MG p

'
=M, '+M„, ', where M, ~' is the axial contribu-
tion calculated previously. Since the same non-
axial processes are operative in both cases, Ms "
=—M„, '. For the heteropolar case, using the Mul-
liken-Lowdin approximation, "one obtains the
crude estimate IM„,"/M, '"I = S,/S, ~ 0.15, where
So and S, are the overlap integrals between near-
est and next-nearest neighbors, respectively, as
calculated using the Slater orbitals. Hence lMsI2}/
M G p l —0.1 5 or n s; /n G p

= 0.02; experimental-(2) IR rR

ly one finds' —0.08.
The nonaxiality of the bonds is closely related

to the noncentral forces. The above argument in-
dicates that these contribute 10-15% to the coef-
ficients of the optic modes of the III-V comoounds.
They are of course crucial for assuring lattice
stability against shear stresses.

The present calculation gives no direct informa-
tion concerning the shape of the absorption spec-
trum. With the availability, however, of infrared
lasers the parallel study of ){

' and (u&"(v) may
prove to be a valuable tool for a quantitative study
of phonon coupling in solids. In particular, the
relations (5a) and (5b) may be used to determine
the relative ordering of the combination bands
since the intensities of the latter are proportional
to the squares of M "or C'".

The author is indebted to Professor N. Bloem-
bergen for a most suggestive discussion.

*Research supported in part by the Joint Services
Electronics Program under Contract No. N00014-67-A-
0298-0006.

$0n leave from Laboratoire d'Optique Quantique,
Universite de Paris-Sud, Centre d'Orsay, 91-Qrsay,
France.

~See for instance, E. Burstein, in Lattice Dynamics,
edited by R. F. Wallis (Pergamon, New York, 1965),
p. 276.

'M. Born and M. Blackman, Z. Phys. 82, 551 (1938).
3M. Born and K. Huang, Dynamicai Theory of Crystal

Lattices (Oxford Univ. Press, Oxford, England, 1954}.
4M. Lax and E. Burstein, Phys. Rev. 97, 89 (1955).
'B. Szigeti, in Lattice Dynamics, edited by R. F. Wal-

lis (Pergamon, New York, 1965), p. 337, and Proc. Boy.
Soc., Ser. A 252, 217 (1959), and 258, 377 (1960).

6D. A.Kleinman, Phys. Rev. 118, 118 (1960).
'J. N. Neuberger and R. D. Hatcher, J. Chem. Phys.

34, 1733 (1961};V. V. Mitskevich, Fiz. Tverd. Tela 3,
3036 {1960), and 4, 3035 (1962) [Sov. Phys. Solid State
3, 2211 (1962), and 4, 2224 (1963)l.

D. A. Kleinman and W. G. Spitzer, Phys. Bev. 118,
160 (1960).

~R. Geick, Phys. Rev. 138, A1495 (1965).
~OFor a semiclassical approach see G. M. Genkin,

V. M. Fain, and E. G. Yaschin, Zh. Eksp. Teor. Phys.
52, 897 (1967) lSov. Phys, JETP 25, 592 {1967)].

C. Flytzanis, to be published.
C. Coulson, L. Rbdei, and D. Stocker, Proc. Boy.

Soc., Ser A 270, 276 (1962).
~~C. Flytzanis and J. Ducuing, Phys. Bev. 178, 1218

(1969).
K. S. Krishnan and S. Kumar Roy, Proc. Roy. Soc.,

Ser. A 207, 447 (1954).
~5W. L. Faust and C. M. Henry, Phys. Rev. Lett. 17,

1265 (1966); I. P. Kaminow and W. D. Johnston, Phys.
Rev. 188, 1209 (1969).
'66. D. Boyd, J. J. Bridges, M. A. Pollack, and E. M.

Turner, Phys. Rev. Lett. 26, '387 {1971). M. A. Pol-
lack and E. H. Turner, Phys. Bev. B 4, 4578 (1971).

~'It is important to notice from (5a} and (5b) that when
LO phonons are involved, the Raman coefficient pro-
vides an additional phonon coupling contribution. This
has always been ignored in the existing theories (Refs.
2-6).

J. CiKek, Mol. Phys. 6, 19 (1963).

775


