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"effective pole" does not come in by naively re-
placing the cut by a pole. It results from the
threshold behavior deduced from the unitari. ty re-
lations plus physical assumptions.

As an illustration, we give a numerical exam-
ple of how the forward peak may look different
from an exponential form. Since we have only de-
duced the polelike threshold behavior for D(t),
and for large t we only know that D(t) approaches
a constant, we simply take as the example

D ""(t) [1/(5m„'- f) +constj.

Taking f,(t) ~e" as empirically observed at larg-
er I;, we find the result as shown in Fig. 1, which
is consistent with the experimental data,

%e remark that the same threshold behavior
should also appear in &N data according to our
argument. If the threshoM behavior deduced here
were indeed to be important, it would unfortunate-

ly also make it more difficult to determine the

total cross section precisely by measuring the
nuclear-Coulomb interference, because the pole-
like appearance of the threshoM behavior resem-
bles that of the Coulomb amplitude.

We thank Dr. P. Strolin for discussions of re-
sults from the intersecting storage rings at the
recent Oxford conference. '
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A method of calculating inelastic hadronic processes is proposed in which massive
stRtes Rle produced by Hegge BxchRnge Rnd decRy into flnRl stRtes with coupling stx'Bngtlls
given by the 8tRtlstlcal l3ootstrap of Frautschi ~ The lIlvRx'lRllt-mR88 distributions for R

particular final state are peaked slightly above threshold and fall off exponentially with
increasing mass, Good agreement with experiment is obtained fox numerous reactions.

Two recent theoretical developments are util-
ized in this paper to provide a description of
hadronic inelastic processes. One development
that is adopted here is that massive states are
produced by the exchange of the Regge singular-
ities." Simple forms for the decay amplitude of
the massive states into low-mass objects have
led to an adequate description of inclusive spec-
tra. Ne assume further that the hadrons pro-
duced in this manner are composite states of
hadrons generated by the statistical bootstrap of
Hagedorn' and Frautschi. ' This is the other re-
cent development invoked, and this assumption
leads naturally to a statistical description of the
decay matr lx of the high-mass state into any

specified final state. One then has a framework
for calculating exclusive as well as inclusive
processes.

Using this procedure, we have calculated mass
distributions for a large number of states (re-
sults will be presented below). We find good
agreement with measured spectra even though
the mass region considered is not very high. The
spectral shape of the A regions of the pn and fr
spectl'a, 'tile Q 1'egloll of tile K+(890)II spectrum,
and the I. region of the K*(1420)II spectrum are
explained by this theory. The shapes of the nm

and An spectra are described too.
We also look at the zg spectrum. At the low

energies encountered in the gg spectrum one
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would not expect the density of states to be great
enough for the statistical model to give a good
description of the data. The theoretical spectral
shape does give a crude averaged picture with
the p peak appearing as a large fluctuation.

In the following, the statistical assumption is
introduced for the decay matrix, and a formula
is written down for the mass distribution for the
decay of a massive state produced by Regge ex-
change into a two-body final state. Experimental
data for several reactions are compared with
the model using the density of states of the sta-
tistical bootstrap. No adjustment of the param-
eters determined by Frautschi and Hamer' is
necessary in order to fit the data. An arbitrary
scale factor is used to normalize to each set of

measurements. Though constraints exist be-
tween the scale factors in principle, we do not
consider this question here. The effects of spin
have been ignored, and we made no attempt to fit
angular distributions. The extension of the sta-
tistical bootstrap to determine the density of
states as a function of angular momentum has
been discussed to some extent' and is necessary
should one wish to describe the angular distri-
butions of the produced particles. We do not pur-
sue this point here.

Consider production by Regge exchange in
which one of the incident particles is excited to
a high-mass state which decays into a final state
labeled by f. The distribution in m, the total in-
variant mass of the final state, is given by

, JdtR(s, t, m) J(uq(P, p„...,p„)6'(P —Qp, )(27T) ' &g --,-*.

(u~(P, p„p,) =Ar(m, m„m, )/p(m), (2)

where A is a constant and

r(m, m„m, ) = [m' —(m, '-m, ')'/4m']. (2a)

is the ratio of noninvariant two-body phase

Here I' is the four-momentum of the massive
state, and N& is the number of particles in the
state f. The p, are the momenta of the decay
products and P(s, t, m) is the modulus of the
Regge exchange amplitude squared, s and t being
the usual Mandelstam variables. && is the square
modulus of the decay amplitude of the state with
mass m into the final state f. We take A(x, y, z)
—x + y + z 2xy —2' 2yZ.

We now restrict ourselves to cases where m
decays into a two-body final state. According to
the statistical bootstrap, such decays are pre-
dominant over higher -multiplicity states, pion
plus heavy resonance emission being the most
common in general. It should be emphasized,
however, that resonances and particles are
treated on an equal footing. Hence, the produced
particle can decay into unstable particles which
undergo secondary decays.

To determine co&, eve assume that the decay
rates into different final states are given by the
densities of these states within the hadron of
mass m in the statistical bootstrap theory, divid-
ed by the total density of states at that mass.
Then, for the decay into specific resonances of
masses m, and ~„

space to invariant phase space evaluated in the
rest frame of the massive state of four-momen-
tum I'. Since the statistical bootstrap is formu-
lated in terms of noninvariant phase space and
we have used invariant, phase space in formulat-
ing Eq. (1), a factor of I" is needed to compen-
sate.

The assumption that the transition matrix is
inversely proportional to the density of states at
mass m is a familiar one in nuclear physics. In
fact, a form similar to (2) describes neutron cap-
ture y-ray spectra. ' In the theory presented here,
if one sums over all possible final states, the
numerators sum to p(m), so that do/dm is in-
dependent of the density of states. This fact is
consistent with the observation that missing-
mass spectra do not show the exponential falloff
characteristic of p '(m).

In general, cd will depend on the relative angu-
lar coordinates of the secondaries and the spin
J of the state produced. In the present paper, we
are not interested in producing detailed fits to the
angular distributions. Bather, our purpose is to
demonstrate how a statistical theory of decay,
based on the density of states from the statistical
bootstrap, will explain the coupling strengths of
the various channels as a function of the mass of
the state produced. Since the distributions in-
cluding spin are proportional to the distribution
used here, ' when one integrates over angular co-
ordinates the decay matrix used here would ap-
pear, multiplied by an additional factor which is
weakly dependent on nz. '
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Evaluating the integral over phase space gives

do, A l (m, m „m,) [A (m', m, ', m, ')]'~
dm p(n~) m

Tr

~
—--- - 2- J dt A (8, t, m )

18(2w)"X(s,m, '-, m, ') ~ (S)

The factor in braces involves the Regge scale factor and residue function at the upper vertex, which
may be evaluated for 1 GeV'«rn'«s using Mueller's theorem. ' We will use this formula at low mass-
es, and we assume it to be a slowly varying function of m. As s-~, the factor in brackets will ap-
proach a constant (to within logarithms) if Pomeranchukon exchange is allowed. Otherwise it will fall
as a power of s.

We will analyze reaction data in experiments of the type

where d is a stable particle or resonance. According to formula (S)

do~ „ I'(m, m, m, ) [X(ma, m, ', m, ')]'/2
— = const ==-

dm mp (m)

(4)

(5)

and we udll use this form with p(m) = (const/m')
x ex'(m/m, ), following Frautschi's statistical
bootstrap result. ~' The specific data correspond
to the reactions

w+p-(pw)+p-Sw+p (A„A, region),

w+p-( fw) +p -Sw+ p (A, region),

E+ p-[K*(8 90) w] +p-E +2w+p (Q region),

R +p-[K*(14 20) w]+p- E+2w+p (I. region),

w+p-w+(nw) 2w+B,

w+p -w+ (&w) Sw+p,

w+p —(ww)+h-Sw+p (p, f, region).

The calculations and results are shown in Figs.
l and 2. All but the reaction w+p-(ww)+a have
a threshoM above 1 GeV, and the spectrum of
resonances, it would appear, is rich enough to
make for validity of the statistical approach used
here. The agreement with experiment is good.
For the case of w+p-(ww) + b. the statistical model
seems to produce a crude average behavior. The
prominent p resonance appears as a strong fluc-
tuation about this average and the f' as a lesser
fluctuation. This latter reaction is the only one
of those considered above that cannot go by Pom-
eranchukon exchange, and we do not know whether
or not it is so that Regge exchange is more selec-
tive than Pomeranehukon exchange in exciting
resonances. At any rate, the threshold fol this
reaction is low and we do not expect statistical
considerations to be valid.

We have provided a procedure for calculating
production processes which is clearly capable of
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FIG. 1. Predictions of the statistical model for
(a) the pw mass distribution in the A&, A& region of the
pw spectrum compared with the 16-GeV/c w +p (pw)

+p data of Ref. 9; (b) the fw mass distribution in the

43 region of the f~ speetruln compared vrith the 16-
GeV/c w++p (f 0w) +p data of Ref. 9; (c) the E*(890)w
mass distribution in the Q region of the E~(890)x spec-
trum compared with the 4.6-GeV/c E +p —(E*(890)wj
+p data of Ref. 10 (d) the E~(1420)wmass distribution
in the I region of the E*(1420)n spectruxn compared
with the 4.6-GeV/c E +p lE*(1420)wi +p data of
H,ef. 10.

!
describing the results of a wide class of strong
interactions. This picture provides an alterna-
tive to the Deck mechanism and is extremely
simple.

It would appear from the above that the A„A„
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FIG. 2. Predictions of the statistical model for
(s) the b++w mass distribution compared with the 16-
GeV/c v +p ~ +(47l)+ data of Ref. 9; (b) the g~)+
mass distribution compared with the 16-GeV/c w++p

7l+ + (Aw)+ data of Ref. 9; (c) the sv+ mass distribu-
tion compared with the 16-GeV w +p w + (s~+) data
of Ref. 9. (d) the w+w mass distribution in the p-f
region of the ww spectrum compared with the 7-GeV/c
v++p (r+w )+D++ data of Ref. 11,

Q, I, etc. , bumps could be the cumulative effect
of a density of resonances which overlap. This
is, so far as we know, a new point of view, and
since these resonances are likely to have sizable
widths, it would be difficult in general to see
their components as discrete states in strong
interactions. Vfe point out at this time that since
we have not separated angular momentum states
in our calculations, it is reasonable that there
could be several or many states in the regions
of m considered. It is to be noted for example

that analysis in the A„A, region yields substan-
tial components for several values of angular
momentum. "
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