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tween neoclassical theory and experiment, previ-
ously recognized, have become even more strik-
ing as a result of the present calculations. The
inclusion of trapped-particle pinching has raised
the theoretical 7~; and the proper rounding of the
ba.nana/plateau transition has raised 7s, ' and

especially the latter. The present deter-
mination of the neoclassical T, and n profile has
also established a marked profile anomaly.
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FIG. B. Profiles of & and &~ when the initial current
distribution is flat: j~= j«(l —r6/a6); or peaked: j,
= j«{1—r'/a')3 (Princeton code&.

typically 10-20 times higher. This is partly be-
cause of the difference in T, profile, and partly
because of a resistivity enhancement factor of
3-6, apparently accounted for by high-Z impur-
ities."

A large, fundamental discrepancy is found in
the particle and energy confinement times. For
the case of Fig. 1 at 60 msec, we have r~ = f;nr dr/
(nrv ), = 2.9 sec, rs, ' = 1.5fo'nT, r dr /(rQ, ), = 0.88
sec, and rs, '=1.5. f;nT;rdr/(rQ;), =0.90 sec.
These exceed the typical experimental values by
almost 2 orders of magnitude. Part of the dis-
crepancy is explained classically by the enhanced
effective Z; a sizable anomaly remains, espe-
cially for particle transport.

In conclusion, we note that the discrepancies be-
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Excitation of Plasma Waves by Two Laser Beams~
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We analyze the effects of (i) the nonlinearity of the large-amplitude plasma wave, and
(ii) the inhomogeneity of the plasma, on the excitation of the plasma wave by beating two
laser beams.

Recently, there has been considerable interest
in the nonlinear excitation of plasma waves by
beating two electromagnetic waves, '" both as a
plasma heating mechanism for laboratory fusion
devices, where the frequencies of presently
available high-power lasers are too great to in-
teract with typical confined plasmas, and as a
means for studying and controlling the ionosphere.

Here we wish to report the analysis of the follow-
ing two important effects on this process: (1) the
nonlinear behavior of the large-amplitude plasma
wave; (2) the effect of an inhomogeneous plasma.
First we study the growth and saturation of the
large-amplitude plasma wave in a cold homoge-
neous collisionless plasma due to the beating of
two laser beams with frequencies much above the
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plasma frequency ~„ taking into account the
modulation of the Lorentz force by the large-arn-
plitude plasma wave as well as the temporal vari-
ation of its phase. A novel parametric instability
is found when the beat frequency is twice the
plasma frequency as a result of the modulation of
the Lorentz force by the large-amplitude plasma
wave. Relativistic effects tend to destroy the
phase locking, providing a saturation mechanism
for the large-amplitude wave. For simplicity,

consider two parallel propagating electromagnet-
ic waves, E~'~ sin(k, x -w, t) and E" sin(k, x'-(o, t)
with polarization electric field along the y axis
a,nd (d, (0 &&co . We assume

n, = eE~.'—~/mrs, .c «I, j =I, 2,

realistic for most of the present experimental
situations. In a cold plasma, the fluid element
responds to the electric field of one laser wave
with a velocity

y-=j,= —(e/2m(u)Q"'exp[i(k, x —(u, t)]+c.c.), (2)

where the vx 8 force is neglected since v/c « I, and the self-consistent electrostatic field is neglected
because of the high frequency of the laser (&u»&u~). The ion motion is also neglected. Let $„(x„t) be
the displacement of the charged fluid element along x from the equilibrium position xo, so that the in-
stantaneous position of the fluid element is

x(t) =~, +g„(x„t).

The equation of motion for $„at the beat frequency is

d'$ /dt'+co '$ =(e/mc){$ '~B ' +$ (')B (' )

This is an exact nonlinear equation for $„ in a cold plasma so long as the charge sheets do not cross
over, ' because the electrostatic field is then simply obtained from Gauss's law: E =4mn, e $„. We as-
sume that the solution to Eq. (4) is of the form

g„(x„t) =A(t) sin[k, x, —(u,t+q(t)], (5)
where the amplitude A(t) is small compared with ko ', and both A(t) and the phase y(t) are slowly vary-
ing compared with &u~. In the absence of the electromagnetic wave, Eq. (5) with A and p constant is an
exact solution for the large-amplitude wave in a cold plasma provided Ako «1, the condition for no
crossing of the charge sheets. The nonlinearity in the interaction between the electromagnetic waves
and the plasma through the Lorentz force then causes the amplitude A and phase y of the plasma wave
to change in time, if the matching conditions in the frequency and wave number are met. The rate of
change of A and y, however, is slow compared with co~ if (eE/mec) «l. Substituting Eq. (5) into the
right-band side of Eq. (4) and using the Bessel identity

exp(in') = Q J,(n) exp(ie),

' , (e 'E&E,*M(l
$„+&@~'$„=-i— '

~
PJ, (h —.kA)exp(i[(dk +tk, )x, —(Aco +le~)t +ly]j+c.c. ~.

where dP =k, -0» Aced =~, —~, = M c. We consid-
er first the case in which M =Ao, Au =&~. Sub-
stituting Eq. (5) into Eq. (6) and performing the
average over space ro and fast time variation
-v~ ', we obtain the equation for A(t) and y(t) on
the slow time scale, keeping only the leading
terms in (A/A)/(u~ and (j/q)/~~,

A =& sing, (7)

Ap =A cosp~

where A =n, n, re~/4ko, and n& is defined in Eq.
(I), and we have set J, =l, since kg «I, and ~~

i =ck,. From Eq. (8) it is clear that the plasma
oscillation phase locks very rapidly with the beat
wav e with stationary phase p =

p &~ sine e p 1S
positive for —2m & y & 2~ and: negative for &m & p

The stationary phase is reached when cosy
=0 and A & 0. Thus, the large-amplitude plasma
wave grows linearly in time,

A(t) =A(0) +-,'n, n, ((u /k, )t.

In this approximation the wave would grow until

kP = I, g„=c. Later we therefore discuss rela-
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tivistic corrections.
Next we consider the case where 6+ =2&~, dk

=2k,. Again performing the spatial and fast time
average on Eq. (6), we obtain

A, =- —,'n, o.', to~A, sin2y =- 2Akg sin2y,

p = —p&q&2QI, cos2@ = —2~kg cos2cp.

(10)

a2 —] ~l(6a3)2 (14)

for the case a(0) «1. Thus, the wave growth is
stopped when 6a'=4, and the amplitude saturates
a.t

Ak, =(,a,n, )"'«1,
where co~ =Roc is used. We may remark that, un-
der the assumption o. «1, the harmonic excita-

Thus, the plasma wave and the beat again tend to
phase lock. At the stationa. ry phase y = —&m, the
amplitude of the plasma wave is exponentially
growing, A, (i) =A, exp(yt), with growth rate y
=e,e,o. . By one e-folding of this instability with
Ace =2('&, the plasma wave growth given by Eq.
(9) for the case A~ =&a~ has long since saturated.
Thus, the second-harmonic case gives somewhat
weaker coupling. This parametric instability is
in fact a four-wave process in which the large-
amplitude plasma wave, modulating the Lorentz
force due to the beat wave at 2'~, renders the
plasma wave itself unstable.

As the amplitude increases, the relativistic ef-
fect on the frequency mismatch becomes impor-
tant, leading eventually to phase unlocking a,nd
saturation of the amplitude. With relativistic
corrections for $/c «1, i.e., letting $ - (d/dt)$(l
+2@), Eqs. (V) and (8) become, for the case S~
=

QPp~

Q = sin+~

ap =eosp+~a,

where a =A/A, 5 =,(v~'/c')A'. We can integrate
the above equations to obtain

tion of plasma waves at 2(d~ etc. can be neglected
since the a,mplitude of the harmonic is limited
by Ap, = n, II„much less than Eq. (15). Because
of this relatively low level of saturation, wave
breaking as a thermalization process does not oc-
cur. Without bFeRklng OF otheF dlsslpatlve mech-
anisms, the amplitude would oscillate and the
motion is reversible. Thus, collisions or other
parametric processes a,re necessary for thermal-
ization of wave energy. Landau damping and oth-
er thermal effects are not important in a homoge-
neous plasma, as the plasma wave generated by
two parallel propagating electromagnetic (em)
waves has a phase velocity equal to the velocity
of light. On the other hand, the plasma wave gen-
erated by two opposing em waves has a phase ve-
locity co~/0, = c(&u, —w, )/(v, + &u,), which can be
coDlpRrRMe to the electron thermal speed 8, lf
co~/v, is of the order of v, /C. In this case, the
electron Landau damping of the plasma wave can
provide the dissipation. For &u~/k, v, » 1 (weak
Landau damping), a similar analysis for the
large-amplitude wave can also be carried out for
the case of opposing laser beams. The growth
rate of the plasma, wave is found to be larger than
that given in Eq. (9) by a factor of (&o, + tv, )/u~.

Now we turn to the effects of plasma inhomoge-
neity. Here the waves are generated in the re-
gion where the local plasma frequency ~~(x) is
close to the beat frequency h~ of the two em
waves. As the plasma wave propagates into the
region of lower density, its wave vector k(x) in-
creases and phase velocity decreases as a result
of the dispersion ~elation (d' = ~~'+ 3k'v, ', leading
to its eventual absorption by Landau damping in
the region where the phase velocity is comparable
to the thermal speed. In the following analysis,
we assume small-amplitude plasma ~aves. The
equation of motion of the electron fluid in the
presence of two em waves E, sin(k, x —&o,t) and
E, sin(k~ —~,t) with ~„~,» &o~ and E„E,along
they axis is

nm(&v/8/+v Vv) = —VP +Ene+(nEev +BX/c) (16)
where p is the electron pressure and E is the electrostatic field. The velocity due to the high-frequen-
cy em wave 18 glvell by Eq. (1). Tile llnearlzed Fourier-component equatioll of Illotloll fol' (do = Lh(d is

i e no Ak'E, E,*i(o,n,mv„=-yv, 'm '+n, eE„-4 ' ' ' exp(-iakx),Bx 4 I (d ~&2

where 6k=k, —k„cu=~&u=~, —~„andy=3 for the adiabatic equation of state: pn ~=const. The Pois-
son equation is 8E/Bt = —4~n, ev, . Thus, we have the following equation for the electrostatic field:

s'E/Sx' —([&u~'(x) —e,']/Sv, '}.E = 8 exp(- i b,k x),
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e (u~'(x)Ak
12 'Ppl (d&(d2g &

For a linear density profile, su~'(x) =&a,'(1+x/1.) with &u, =6~, Eq. (18) becomes

E,{+~) =(~)'"{a/x)'"exp(- 3n'"x'"), x - ~,

E (--) =( )'"(./l I)'"-p(--: '"l.l"'- ./4), (22)

Th 1 t f the lnhomogeneous equation can then be constructed ln ter ms of the solutions of the
homogeneous equation E+ for x&0 Rnd E for x &0 by the method of Green's functions,

E (x')S(x') ",E,(x')S(x')
E(x) E,(x) dx +E (x) dx'

~ 00 lV x

where 5"=E, 'E -E 'E+ =2m' is the Wronskian. The outgoing wave Rt x - —~ is then

, E,(x')S(x') E.S i(Ak)'
(24)E(- ~) =E dx' ' — ==-:—exp

2&ot Q

With the group velocity given by 1»~=s&u/Bk =3k', /re~, and the en gy ty p2 er densi~ of the lasma wave given
by 2 E) '/4v where the factor of 2 accounts for the kinetic energy of the oscillation, we obtain the out-

going energy flux of tile plRs111R WRve,

- =" ".'=-'. ='.(--'.)'(.')"'=-"(-')'(--.)'='. .-'
for E~ E2, (dl =(d--i . h)2» where F1I»=c(Ei +E2 )/8m
=c)E)'/4v is the incident energy flux. The outgo-
ing energy flux mould be absorbed by the plasma
through Landau damping.

For opposing laser beams only the factor hk is
cllR11ged ill oui' CRlculRtlolls fl'0111 ((d& —(d2)/c 'to

(~, +&a,)jc, and the outgoing energy flux is hence
enhanced over that given in Eg. (25) by a factor
4(~ /&o )'. In this case for 10-)lm (CO,) lasersL P

16and plasma density n =10, we find

In the case of two parallel lasers incident on a
parabolic density profile, ~~'(x) = &o,'(1 —x'/I')
with hv =rvo, the outgoing flux is enhanced over
that in Eq. (25) by a factor c/1»„and the absorp-
tion length is reduced by the same factor.

It has recently been pointed out' that in a three-
wave process of the type considered here, the
MaxiIDum eDergy Which can be extracted ls limit-
ed to u&~/&u, by action conservation. The authors
of Ref. 5 then consider cascading to higher and
lower fl equencies~ (d~ +(dp ~ 43~ —2(dp, etc.~ to in-
crease the absorption efficiency. It is interesting
to note. that the laser powers which they find nec-
essR1'y fol' efflclent cRscRdlng R1 6 coDlparable to
those which we find necessary in the presence of
the typical plasma inhomogeneities.

%6 acknowledge helpful conversations with J. M,
Dawson and F, %. Perkins on this subject.

with I. iD centiIDeters Rnd I in watts per BquRre
centimeter. Since CO, lasers of. powers 10"W/
cm' are presently available, the method appears
vrithin the realm of practicality, although at much

higher pow'61 levels our linear approxixQRtion will
not apply.

(19)O'E/Bx' —axE =S exp(- i hkx),

where n =a»~'/3v'I, . The boundary conditions are such that the solution is spatially damped at x- ~
liat ry and outgoing Rt x —„The homogeneous equation is the well-kno%'n A1ry equRtion,

whose solution has the following integral representation:

E,= f dPexp(gx —p'/3e), (20)

where E+ is the solution damped at x-+ ~, Rnd E is the outgoing-wave solution at x- —~. The contour
C+ runs from —i~ to+i~. C runs from+~ to+i~. The saddle points are P=+(nx)'", on the real ax-
is for x&0 and on e lmaglnary axis or x0 d th Rxls for x &0 The Rsymptotlc solutions can then be obtained frorQ Q,

(20) by integrating along the path of steepest descent,

(21)
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Thermodynamic Fluctuations in a Reacting System —Measurement
by Fluorescence Correlation Spectroscopy
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The temporal correlations of thermodynamic concentration fluctuations have been mea-
sured in a chemically reactive system at equilibrium by observing fluctuations of the flu-
orescence of a reaction product. The experiment yields the chemical rate constants and
diffusion coefficients and shovrs the coupling among them. Data are reported for binding
of ethidium bromide to DNA.

The time correlations of thermodynamic con-
centration fluctuations in reactive multicompo-
nent systems at equilibrium are determined by
the kinetics of chemical reactions and diffusion
processes. Purely diffusive fluctuations have
been measured with great success by quasielastic
light scattering' and extension to reaction kinetics
has prompted several experiments' and attracted
considerable theoretical attention. ' However, it
now appears that homogeneous chemical kinetics
are not amenable to scattering studies because
the dielectric-constant changes that reveal the
fluctuations are usually too small. In contrast,
optical absorbance coefficients and fluorescent
quantum yields frequently display large changes.
Hence we chose to observe intrinsic concentra-
tion fluctuations using a fluorescent indicator.

We report here direct observations of fluctua-.
tions about thermodynamic equilibrium in a re-
active multicomponent system of biophysical in-
terest. We have studied the reversible binding to
DNA of ethidium bromide (EtBr), a dye that in-
hibits nucleic acid synthesis. ' The complex of
dye and DNA is strongly fluorescent'; thus fluctu-
ations in the number of molecules of the complex
in a small volume defined by a beam of exciting
radiation are indicated by fluctuations of the total
fluorescent power. '

The principal chemical reaction between the
DNA (A) and the EtBr (8) to form the fluorescent
complex (C) is supposed to be a single-step bi-
molecular process with rate constants kf and ky

(in fact the system is more complex, as will be

seen):
8+8 C.

kg

The equilibrium constant is defined in terms of
the equilibrium concentrations C„, C~, and C~
as K = k&/k, = Cc/C„Cs. Thermodynamic concen-
tration fluctuations decay via the chemical reac-
tion as exp(-Rt), where the inverse relaxation
time 8 is'

R = ky(C„+ Cs) + k».

Since diffusion provides alternative relaxation
paths, the correct description of the fluctuation
spectrum requires a set of coupled differential
equations which for ideal solutions assume the
form

8 5C, /8 t = D,V.
' 5C, +.Q,Z', , 5C„, .

where 5C,.=-GC,.(r, t) are the local concentration
fluctuations of the three reactants of Eq. (1); the
D,. are corresponding diffusion coefficients, and
the T,k are the elements of the matrix of linear
chemical interaction coefficients implied by
Eq. (1).'

In our experiment, fluctuations of the concen-
tration C~ of the fluorescent complex cause the
fluctuations in a photodetector current. The
autocorrelation function of the photocurrent fluc-
tuation 5i(t) = i(t) —(i(t)), with lel written ~, is
G;(r) = (5i(t+ i) 5i(t)). Neglecting shot noise for
simplicity, the photocurrent due to fluorescence
induced by the exciting radiation I(r) is

i(t) =ge gf I(r)Cc(r, t) d'r,
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