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ocally that A is positive for the 5'D», states of
Rb" and Rb", negative for the 5'D,& states, and
positive for the 7'S» states.

The anomalous D-state hyperfine structure of
rubidium is reminiscent of the anomalous P-state
hyperfine structure of lithium. ' Since core po-
larization' is believed to be responsible for the
anomalous P-state hyperfine structure of lithium,
core polarization may also be at least partially
responsible for the D-state hyperfine-structure
anomaly in rubidium. Also, it is probably not
coincidental that the fine-structure interval (2.96
cm ') for the 5D state of rubidium is about an
order of magnitude smaller than one would ex-
pect from the Land0 formula. '

These experiments demonstrate that some very
interesting physics is to be found in the non-P
excited states of the alkali atoms. They also
demonstrate that cascade decoupling and cascade
radio-frequency spectroscopy can be used to
measure the properties of these states with the
same sort of precision and convenience that char-
acterized the optical double resonance and level-
crossing experiments on excited I' states. ' We
are presently extending these experiments to
other S and D states and perhaps to Estates, and
we shall improve our resolution by operating at
higher frequencies. We shall also set limits on
the quadrupole coupling constants of these states
and measure their radiative lifetimes by analyz-
ing the widths of the resonances.

We are indebted to Dr. Alan Lurio for reading
an initial draft of this paper and for suggesting

that we check the signs of the A values. We are
also grateful to W. Nagourney for his help with
the signal-averaging computer program used to
accumulate some of our data.

*Work supported in part by the Joint Services Elec-
tronics Program under Contract No. DAAB07-69-C-
0383, and in part by the U. S. Air Force Office of Scien-
tific Research under Contract No. AFOSR-68-14548.
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The predictions of the full two-regime neoclassical transport theory have been obtained
by numerical computation; they are compared with observations on the ST Tokamak.

Several publications' ' have presented computa-
tions of radial transport in Tokamak discharges,
based upon incomplete or approximate sets of
neoclassical transport coefficients. In Ref. 4 a
code was used which incorporated the complete
neoclassical transport theory, but limited itself

to the lowest-collision-frequency ("banana") re-
gime. ' There were two important deficiencies in
this treatment: First, the "banana" equations
are singular at the axis where the high-collision-
frequency ("plateau" ) regime is always entered
in the complete theory; second, present-day
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Tokamak experiments in fact fall into the plateau
regime over much of their radial profiles, espe-
cially if the collision frequencies are enhanced by
the presence of impurities,

Recently, a complete neoclassical transport
theory including both banana and plateau regimes
(and the transition between them) has been worked
out', the purpose of this Letter is to present pre-
dictions of this theory applied to the Tokamak, as
obtained with two computer codes of somewhat dif-
ferent structure. The Princeton code solves im-

!
plicitly the finite-difference equations obtained by

exact space and time centering; all nonlinear dif-
ference terms are linearized, including those
arising from the most significant dependences of
the transport coefficients on the dependent vari-
ables. The Texas code is also centered and im-
plicit, but uses a predictor-corrector technique
which avoids linearizing the transport coefficients,
so that m:ore complicated dependences may be
readily handled. Results with the two codes are
in substantial agreement.

The neoclassical transport equations, incorpor-
ating a simple fit to the banana/plateau transi-
tion, are
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The other notation is standard or self-explana-
tory. The banana regime has &, &*«1, and the
plateau regime has v, &*»1. Both codes have
used the above equations; the Texas code has al-
so investigated the effect of more exact fitting to
the detailed structure of the banana/plateau tran-
sition. '

All results given here are for standard param-
eters of the ST Tokamak with hydrogen plasma
(a =14 cm, R =109 cm, i=40 kA, B=30 kG, Z
=1). The initial density profile is parabolic, n(r)

=n,[0.8(1 —r'/a')+0. 2], with n, =10" cm '; n(a)
is held fixed at 2~10" cm '. The initial electron
temperature profile is also parabolic, T,(r) =T„
x[0.8(1 —r'/a')+0. 2j, with T„=200 eV; T,(a) is
fixed at 40 eV. Initially, T;(r) is uniform at 20
eV; T;(a) is fixed at 20 eV. The skin phase of
Tokamaks is circumvented by initially distribu-
ting the full current within the plasma; in Figs.
1 and 2 it is initially parabolically distributed,
~.(r) =~ ..(1 —r'/a').

Profiles at 60 msec of n, T„T;,E„and t,

=2mRBe/rB are shown in Fig. 1. Of principal in-
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also established a marked profile anomaly.
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FIG. B. Profiles of & and &~ when the initial current
distribution is flat: j~= j«(l —r6/a6); or peaked: j,
= j«{1—r'/a')3 (Princeton code&.

typically 10-20 times higher. This is partly be-
cause of the difference in T, profile, and partly
because of a resistivity enhancement factor of
3-6, apparently accounted for by high-Z impur-
ities."

A large, fundamental discrepancy is found in
the particle and energy confinement times. For
the case of Fig. 1 at 60 msec, we have r~ = f;nr dr/
(nrv ), = 2.9 sec, rs, ' = 1.5fo'nT, r dr /(rQ, ), = 0.88
sec, and rs, '=1.5. f;nT;rdr/(rQ;), =0.90 sec.
These exceed the typical experimental values by
almost 2 orders of magnitude. Part of the dis-
crepancy is explained classically by the enhanced
effective Z; a sizable anomaly remains, espe-
cially for particle transport.

In conclusion, we note that the discrepancies be-
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Excitation of Plasma Waves by Two Laser Beams~
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We analyze the effects of (i) the nonlinearity of the large-amplitude plasma wave, and
(ii) the inhomogeneity of the plasma, on the excitation of the plasma wave by beating two
laser beams.

Recently, there has been considerable interest
in the nonlinear excitation of plasma waves by
beating two electromagnetic waves, '" both as a
plasma heating mechanism for laboratory fusion
devices, where the frequencies of presently
available high-power lasers are too great to in-
teract with typical confined plasmas, and as a
means for studying and controlling the ionosphere.

Here we wish to report the analysis of the follow-
ing two important effects on this process: (1) the
nonlinear behavior of the large-amplitude plasma
wave; (2) the effect of an inhomogeneous plasma.
First we study the growth and saturation of the
large-amplitude plasma wave in a cold homoge-
neous collisionless plasma due to the beating of
two laser beams with frequencies much above the
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