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ized by Seitz are responsible for the significant
reduction of Mossbauer effect. %bile a detailed
computer model such as that employed by Vin-
yard and collaborators to trace the history of an
energetic ion in a lattice would be much more
satisfactory, no such calculation is available.
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We present a new method of solving analytically the time-dependent Boltzmann trans-
port equation. Two examples are given to demonstrate the use of this method to predict
ac and dc conductivities in nondegenerate single-valley semiconductors.

The time-dependent Boltzmann transport etluation has been solved analytically on the basis of cer-
tain approximations, ' or solved numerically using computer techniques. ' The purpose of this Letter is
to present a new approach to the exact solution of this equation by means of an iterative perturbation
technique for single-valley semiconductors.

The time-dependent Boltzmann transport equation for a single-valley semiconductor which is spa-
tially homogeneous and free of traps can be written as

Bf/Bt= (eF B/BpF+ Q)f,

where f is the carrier distribution function, e is the electronic charge, E is the applied electric fieM,
pF is the momentum of the carriers in the direction of the electric field, and Q is the scattering oper-
ator such that Qf is the rate of change of f due to the scattering of carriers. When E=0, Etl. (1) has
the steady-state solution f=f» where f, takes the form of a Maxwell-Boltzmann function for nondegen-
erate semiconductors and a Fermi-Dirac function for degenerate semiconductors. Taking fo as the
zero-order solution and using an iterative perturbation technique similar to that used in the quantum
field theory, ' we can find the solution of Eq. (1) to the nth order as

f=f, + f dt, eF(t, ) +Q f, + f dt, f 'dt, eF(t, ) +Q eE(t,) +Q f, +
~PF - 0 0 ~PF ~PF

+ f dt, f 'dt, f " 'dt„eE(t, ) ---+Q ~ ~ ~ eE(t„) +Q f,. (2)-
o 0 0 BpF BpF

The exact solution of Eg. (1) is then given by

f(t) = lim f„(t). (3)n~~
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If Qf is linear in f„which is the case for nondegenerate semiconductors, the term in the first order
of E, denoted by g, (t), is

g (t) = »m f d«F(t )—— + f dt f 'dt QeE(t )
" + ~ ~ ~ +f dt f dt ~ ~ f " 'dt Q" 'eF(t )—-'-+ ~ ~ (4)

In this equation J, dt, eE(t, )(ufo/Bp F) is the first-order deviation from f, produced by the external ap-
plied field, and the other terms describe the effect of repeated scattering of this deviation. Thus,
g, (t) satisfies the following equation:

ag, (t)/at= Qg, (t)+ eF(t) 8fo/Bp, .
This equation expresses the balance of the rate of change of f to the first order in E. In general, it
can be shown that the deviation from f, in the nth order of E, denoted by g„(t), is governed by the fol-
lowing rate equation:

eg.(t) (, eE(t) &g.

Thus g, (t), g, (t), ~ ~ ~ can be solved successively. The exact expression for f(t) in the case of nondegen-
erate semiconductors ls then

f(t) =f.+ & g.(t). (7)

It can be seen that if E(t) oscillates with frequency w, g, (t) contains components of frequency &u, g,(t)
contains components of frequencies 0 and 2+, g, contains components of frequencies + and 3(d, and so
on; so that f(t) contains components of &u and all the higher harmonics of u&.

Suppose E(t) is given by

F(t) = Eo exp(iet),

where E, is the peak amplitude of E(t). Qf can be written as

Qf = (1/7 —H)f, (9)

where ~ is a scalar quantity depending on the direction of p in general, so that (1/~)f is the rate of
change of f due to the carriers being scattered out of state p, and H is an operator such that Hf is the
rate of change of f due to the carriers being scattered into state p. Thus, using an iterative technique,

g, (t) can be written as

r(1 —ivv) v(1 —iud) r(1 —i&us) v'(I —im7) 8f

In the following are given two examples to show the application of our approach for predicting some
experimental phenomena in nondegenerate semiconductors.

In most ac conductivity experiments the applied electric field is a superposition of a dc bias field
F, and a comparatively much smaQer ac component E,'exp(i&et). For this case the deviation of f from
fo in the first order of E,' is given by

«(I —i~)
1

T(1 —i(o7') ~(1 —io)v) 7(1 —i(oT) 8

1+v'v' 1+ uPw' 1+u'T' 1+ ~'~' sp,

The series

T(1 —i(u7) r(I —ia)w) &f,
1+4) T 1+(d 1 Bpp

can be regarded as equivalent to [T*(1—i~~*)/(I+ aPv*')]&f /Bp 0F, in which ~* is an effective scattering
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time taking into account all successive scattering events

&7'(1 —iwT) w(1 —i~a) i(l —i~a)
1+OP T 1+% i ~+(d T

For most cases, 7* can be calculated without resorting to numerical techniques. ' Thus, the term
independent of F, in bf leads to the expression for the ac conductivity similar to that derived by Herr-
ing for the low dc bias field. For higher dc bias fields the terms of higher powers in E„have to be
included in bf for the determination of the ac conductivity. Gn the basis of the time-reversal sym-
metry, the cax'riel energy 18 symmetric 1n p,

~(p) =E(-p). (12)

Therefore, the terms in ~f are symmetric in p when n is even and those are antisymmetric in p when

g is odd. The terms with odd n contribute to the avexage carrier momentum. For such terms, the
limit of the series

'T(1 —2 GP7 ) 7(1 —Wd 7')

1+ co'7' 1+ aPv'

is determined by the degree of anisotropy of the scattering, and this limit is likely to be of the same
order of magnitude as [T(1 —i~~)/(1+ co'r')]k, (p) even in the most anisotropic cases, ' where A, ,(p) is
an odd function of p. The terms with even n contribute to the average carrier energy, For such terms,
each term in the series

'T(1 —1COT) T{1—l(dT)
1+ QP7' 1+ CO 7'

is approximately (1 —&k~)/&E)) times the previous term, and the limit of the series is then approxi-
mately

7(l —ion)
)

&E)
1+ (u'7' '(

&ha))
'

where h, (p) is an even function of p, (ken) is a typical amount of energy exchange during scattering,
and &E) is the average carrier energy. For nearly elastic scattering &8)/(S~) is much larger than
unity. Thus, it is reasonable to introduce momentum and energy relaxation times in the phenomeno-
logical approach to the ac conductivity at high dc bias fields, and to assume that the energy relaxation
time is much larger than the momentum relaxation time for nearly elastic scattering. Gibson, Qran-
ville, and Paige' have predicted that a negative ev/aE will decrease the magnitude of the imaginary
part of the ac conductivity. This is obvious from Eq. (11).

For the case &v=0, g, in Eq. (10) becomes time independent, and from Eq. (7) the carrier distribu-
tion function can be written as

oo

f = Q -eF7(1+H~+ ) — —f
n=o- apF 8,

An important consequence of Eq. (13) is that the average of a physical variable y, defined by

&~&= ff~&'p/ff d'p,

will change with the field, and this change as a function of applied field can be determined by

d&~& ~fed'pif. d'p -&f.md'PJf d'P

(ffd'p)'s

Letting y be the carrier velocity, we can conclude that the average drift velocity of carriers always
increases with increasing field, and that there is no negative differential resistence xegion as long as
the number of carriers remains constant and the phonon distribution function remains undisturbed.
This conclusion is valid irrespective of the band structure of the semiconductors provided that the
effective mass of the carriers is not negative. For the band structures with negative effective mass,
Kromer has predicted that the occurrence of negative differential resistance is possible.



Vol, UMs 29, NUMsm Io 4 SspxsMszR 1972

The above discussion provides a qualitative justification of our new approach to the solution of the
time-dependent Boltzmann transport equation.
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A macroscopic uncertainty principle has been invoked as an explanation for the anom-
alously high attenuation of third sound in certain thickness regimes of liquid-He films.
The pxopagation criteri. on deduced from this idea appeax s to be in accord vrith experi-
ment. %e outline here a microscopic mechanism which gives rise to a large attenuation
and which yields a propagation criterion essentially equivalent to the one proposed as a
macroscopic uncelta1nty principle We find that the nonlinearltles inherent 1n the prob-
lem play the significant role in producing this attenuation.

Third sound is a surface-wave propagation in
an adsorbed thin film of liquid He below the A.

point. This phenomenon is associated with the
superfluidity of liquid He. It does not occur for
a nonsuperfluid. The accepted' approximate for-
mula for the velocity of third sound exhibits this
fact in its dependence on the superfluid fraction:

02 =Do(D, T) Bu(D)/BD,

where c represents the velocity of third sound,
D is the unperturbed mean thickness of the He
film, Bu/BD represents the magnitude of the Van
der %'aals force per unit mass between the sub-
strate wall and atoms of He at a distance D from
that mall', and

&(D T) = (p /p)n~

represents the effective superfluid fraction in the
film. Equation (1) neglects the small tempera-
ture variations which accompany the third-sound
wave and which modify this equation by a few per-
cent.

It has been found experimentally that there are
regimes of film thickness at which the attenua-
tion of third sound becomes anonalously high.
"Classical" theory' ' does not account for atten-
uations of this magnitude. The third-sound signal

disappears in very thin films somewhat earlier
than expected —in a film about 35% thicker than
derived from a healing-length calculation. ' ' What
is perhaps much more unexpected, however, is
the thick-film anomalous regime. For relatively
thick films the third-sound attenuation is found to
be considerably higher than deduced from a "class-
ical" mechanism. It has been suggested that these
effects are evidence for a macroscopic quantum
uncertainty principle. ' This notion is embodied
in the idea that third-sound waves can only propa-
gate under the condition that

)t/McD & 2,
where M represents the mass of one He atom.
And, indeed, this condition appears to be well
satisfied experimentally. ' The purpose of this
note is to indicate a microscopic mechanism
which gives rise to this apparent uncertainty prin-
ciple. In so doing we derive the counterpart of
Eg. (3) from microscopic considerations.

Our calculation is restricted to the thick-film
regime in that only in this limit is our hydrody-
namic formalism valid. Some rather serious
modifications would have to be made to carry the
calculation to the very thin-film limit. Hence
this presentation is to be viewed as a preliminary


