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and of course zero asymmetry if both foil and
wire were heated to the same temperature. The
results shown in Figs. 2(a) and 2(b) illustrate
these results, although there is a small addition-
al asymmetry which is independent of tempera-
ture gradient.

Successful measurements of the asymmetry
were frequently frustrated by the mechanical and
electrical instability of the point-contact junc-
tions. Small mechanical vibrations or electrical
switching transients caused discontinuous and ir-
reversible changes in the I-V characteristics of
the junction. However, seventeen different asym-
metry measurements were made. The magnitude
of the measured asymmetry varied from 8 times
less than that predicted by Ec(. (3) to almost 7
times greater. This spread can be attributed to
the widely different structures obtained each
time the junction was remade. Thus, the effec-
tive length and area of the junction, the amount
of oxide between the two surfaces, and the strain-
ing of the metal were all 11kely to vary enormous-
1y. In particular, the region across which the
temperature gradient existed was probably very
ill-defined, so that the effective quasiparticle re-
sistance R was also correspondingly badly de-
fined, and not necessarily given by the resistance
of the I-V characteristic. With these factors in
mind, we feel that the spread in our data is ac-
ceptable. It is important to note that although
the magnitude of the asymmetry was very irre-

producible, the sense was always as expected, a
fact which gives us confidence that we were in-
deed observing the superfluid backflow.

In summary, we have observed an asymmetry
in the critical current of a Pb-Pb point contact
induced by a temperature difference across the
junction. We ascribe this asymmetry to the
counterflow of supercurrent analogous to the
counterflow of superfluid helium observed in the
fountain effect. The asymmetry was always in
the expected direction, and of approximately the
expected magnitude.
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The scaling equation of state of an Ising-like ferromagnet is derived by an expansion in
& =4-d, w'here d is the dimension of space. The result is compared with numerical cal-
culations on the three-dimensional Ising model. It is also established that the "linear
model" is exact up to order &2.

The Feynman-graph method used previously for
calculating critical exponents is used here to ob-
tain the equation of state near the critical point.
It is calculated in an expansion in & =4 —d, where
d is the dimension of space. The calculation is
performed for an Ising-like ferromagnet, but the

result may be applied to liquid-ga, s transitions
and othex critical points by relabeling the vari-
ables. The equation of state is obtained in the
scaling form predicted by Widom and others. In
terms of the magnetic field II, the magnetization
M, and the reduced temperature t = (T —T,)jT„a
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3 (2m+1)(n+2)
P = P

2( 6)E'+ 2( 6)g
e +O(t ), (2)

(3)

These results agree with what one obtains from

scaling form is '3

H/M '=P(t/M"')

In this work, the critical exponents 6 and P and
an explicit expression for the function f have been
obtained to order & .

The exponents have been derived for an arbi-
trary number n of spin components as in Ref. I:

the scaling relations~

P =y(d —2+q)/2(2-q),
6 =1+2(2 —q)/(d —2+q),

(4)

(5)

and the values of y and g previously calculated in
Ref. I. In three dimensions and for n = I, this
gives the values P =0.34, 6 =4.46.

The function f is reported only for the Ising-like
case v=1. For ~&1, the appearance of a mass-
less Goldstone mode below T, leads to infrared
problems which require a separate analysis.

Since the method of calculation has been de-
scribed in a previous work, ~ we will only review
briefly the notations and the basic steps. The
Hamiltonian used is written

$e/07' = fd"x [', V's-(x)+ ',r,s-'( x)+ (u, /4!)s'(x) Hs(x-)].

It is convenient to subtract from s(x) its expectation value, and to define

y(x) =s(x)-M,

M =&s(x)&,

where the bracket denotes the thermodynamic average. In terms of the field y, the Hamiltonian is
then split into two pieces, X=R, +X„with

Ro/kT= ,'fd~x—(gy primp ),

Z, /t r = fd'x[(u, /4! )q '+ ~u, Mq '+-,'(r, r+-,'u, M—')q '+(r,M + ~u,M'-H)q ],
where r is the reciprocal of the susceptibility, and + is treated as a perturbation.

Instead of using a cutoff equal to 1 as in Ref. 1, all propagators have been cut off at momentum A,
much larger than the inverse of the correlation length, in order to check that all physical quantities
are indeed independent of A.

The first step is to determine the coupling constant uo,
'

(6)

(8)

16g2e +16g2gRg + InA2) +0(g3)

A = ~~7 - 2 1n4m+ &c = -0.847

(10)

(11)

(c denotes Euler's constant). The explicit cutoff dependence of u, is not unexpected. At order e, uo
does coincide with the fixed-point solution of the renormalization group equations ' but not at order &3.

The spontaneous magnetization below 7, turns out to be of order r'"e "2 and, therefore, to do a con-
sistent calculation, factors of uoM'/r must be regarded as of order 1.

Expanding the relation (y) = 0 in powers of e, we obtain

u 342 M u 334 M—=t+ -+ '2 r(lnr- —,'e ln r -ink )+ 0 ~ [lnr(lnA -2)--,'ln'r]--, '0 ~[2lnr(lnA +I)-in'r]. (12)

This equation and the relation

r =[aH/BM],

provide an implicit definition of the equation of state. Defining

x= t/M"', (14)

it is tedious but simple to show that all lnM and lnA. dependence disappears, provided a suitable re-
normalization of the temperature scale is performed. The result reads

H/M =x+u+ &e[(x+~2) ln(x+ &~)+Au]+e (~(2x+3u) ln (x+m2)+[3~(x+m2)+~Au]ln(x+m)}, (15)



VmUMj! 29, NUMszR 9 PHYSICAL REVIEW LETTERS 28 AUGUsv 1972

IO

-IO

Flo. 1. Plot of 1-f(x)/f GD g) at orders zero, one, and two in &.

where u =16m@/3'and A is the number defined by Eq. (11).
Detailed fits to experiments for liquid-gas transitions or Ising-like ferromagnets have not been

made. The main point has been to verify that the successive corrections of order e and e to mean
field theory do go in the right direction. The results are displayed in Fig. 1 and compared with the
Gaunt-Domb equation of state

II/m'=f „(x)
for the three-dimensional Ising model obtained by the use of Pads approximants. The fields and tem-
perature scales have been chosen so that

If/I'=I at ~=0 -t/~"'=I ate=0 «0
Griffithss has shown that the analyticity of the free energy as a function of M at fixed nonzero t im-

plies that, at infinity, f(x) has an expansion of the form

f(x) gs xy-a(n-1) 8

This requirement is fulfilled by the right-hand side of Eq. (15) in the framework of the s expansion.
For instance the large-x leading terms of this function are

f(x) „= x+ g~x Inx+~s'x Inx+,'~5 m'x Inx

which is indeed the e expansion of x&, where

in agreement with the value previously obtained in Ref. 1.
It is, of course, possible to replace the form (15) of f(x) by a function equivalent up to order sa,

which displays the correct asymptotic behavior. ~ However, it is preferable to write the equation of
state in parametric form in order to fulfill the analyticity condition expressed by Eq. (1V). The param-
etrization of the so-called linear model' has been used as follows. Defining the variables A and 8 by the
relations

If=a"s8(l -8'), t=a(1 -~'8),
the & expansion of the function m(8), where

m =Z'~ (8),

is determined from (15). It is remarkable that, up to order s, there are solutions for which the func-
tion es is indeed linear ' in 8 (though other choices are possible).
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The linear solution

m({))= ce

is valid provided the parameters a, 5, and c whose e expansions read

g =go(1 +Egg+6 g2), 5 = ho (1+cbg+ 6 52), c =co(l +6cg +6 c2),

satisfy the following conditions [normalization is again set by Eq. (16)]:

o= o=2 ~ &o =Y~ ax-c~=wln@, c~ —~b~=~ln2,-1/3 2 3 1 ~ 3

and two similar constraints involving also a„b„and c,. For simplicity, we display only the particu-
lar solution in which c~ and c2 are set arbitrarily to zero:

g = 2 ' [1+ 3 e in@ + e (~ ln 2 —~ ln2 ln3 + 8 ln 3 —,~ ln3 +;,-', ln2) ],

52= 2[1 —', sin —2+@ (~in 2 —
~~~ ln2)],

but other external requirements could lead to an-
other solution.

Finally, it is interesting to note that in this
framework one is naturalIy led to use the form of
equation of state recently suggested by Migdal. ~~

It is an implicit equation from which the tempera-
ture has been eliminated in favor of the suscepti-
bility g, or its inverse r. It reads

FI/r"' '={g(y) y=M/r"' ' (22)

By the same method, the function y has been de-
termined up to order E . The result is

m(y) =~ —1«~'Z '~'[1+(-'+&)~). (23)
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At this stage, two comments should be made:
(i) Migdal's condition P+y = —, is valid only at or-
der e (and for n=1), since

(n —l)e (n + 2)(n'+ 26n + 54) 2

2(n+ 8) 4(n + 8)

(ii) The function y(y) has indeed a rapidly con-
vergent Taylor expansion since, at order i, it
is simply a polynomial of third order. However,
for n & 1, Migdal's parametrization cannot be
used.
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