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as before, but now 1k~I= 2h~ = 2'~/c, whereas in
the parallel case h~= su~/c «2&v~/c. As a result,
the wave coupling on the right-hand side of Eq.
(1b), proportional to h&', is greatly enhanced.
To balance the advantage of enhanced coupling
are two disadvantages and one further advantage.
First, the damping rate may be greatly enhanced

by Landau damping (since now ~~/h~«c), beyond
the optimum y -h. Secondly, the further transi-
tion to 1. —2 cannot be induced by the longitudinal
mode k&, since this would require k~, =k~,

k 2k k or k - 3k violating the dis-
persion relation. This means that the further
decay must be induced instead by a third laser
beam 1.—2 in any desired direction, and the cor-
responding longitudinal wave excited, k~' =k-,
-k~

„

is not the same as k~. Thirdly, no ener-
gy is lost on up-conversion, since each transi-
tion must be seeded by its own laser beam.

The idea of using laser beats to heat a plas-
ma was suggested to us by M. Rosenbluth and
N. Kroll. Discussions with Y.-R. Shen and

C. Townes were helpful for orientation. S. Bod-
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provided us with good advice and encouragement.
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An investigation is made of the effect of order-parameter fluctuations on. the nuclear
relaxation time of supereonducting A15 compounds. It is found that because of the one-
dimensional chain structure of these compounds the fluctuations make an important con-
tribution to the NMB.

The nuclear relaxation time T, in superconduct-
ing compounds with the composition V,X (X = Si,
Ge, etc.) was observed' to display an anomaly
above the transition temperature T;, 1/T, T was
observed to increase by about 20k at tempera-
tures a few degrees above T, [(T- T,)/T, =0.2].
At the time at which these observations were
made, it was not clear to what cause this anomaly
should be attributed; V,Si undergoes a martensit-
ic transformation' at about 21 K, and this trans-

formation causes anomalies in the Knight-shift
and quadrupolar interactions, ' and therefore an
anomaly in 1/T, T is not too surprising; V,Ga is
rarely pure and usually some Ga atoms occupy V
sites; in addition, all these compounds display
anomalies in their electronic properties whi. eh
may be attributed to a sharp peak in the density
of states function, ' and conceivably an anomaly in
1/T, T may be attributed to this peak. Recently, '
experiments on Nb, A1 indicated a similar anomaly
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in 1/T, T of Al" several degrees above T, . Nb, Al

does not undergo R martensitic transformation,
nor does it possess large anomalies in the elec-
tronic properties in the normal state' (as large
as in Nb, Sn, say). Therefore, it appears that the
anomaly in 1/T, T is of a inore general nature
than the max tensitic transformation in these com-
pounds, or even the existence of a shax'p peak in
the density of states.

All these compounds possess the &15 (P-W)
crystal structure ln which the V (or Nb) atoms
RI'6 RrI'Rnged ln three interpenetrating fRmi1168 of
linear chains. If the coupling between the chains
is not vex'y large, the system may possess some
quasi-one-dimensional properties; namely, some
sub-bands of the Sd (or 4d) band may possess
planar constant-energy surfaces in some parts
of the Brillouin zone, the appropriate wave func-
tions being localized on the chains perpendicular
to these surfaces, ' describing electrons moving
along these chains. If the Fermi surface happens
to be planar and near a K„=O(or, sometimes,
a zone boundary) plane, a sharp peak in the densi-
ty of states may result'; but for a general value
of Kz, where no peak in the density of states need
occur, quasi-one-dimensional properties are re-
tained, TheI'efox'6, lt may pl'ove lxlstructlve to
attempt to estimate the anomaly in 1/T, T of
"pure" one-dimensional systems, caused by their
enhanced critical fluctuations, although it is
clear that such a model is an idealization and can-
not be regarded as a quantitative theory for these
materials.

TI16 effect of older-parameter fluctuRtlons on
the properties of superconductors above T, has

een studied recently by many authors 9'o It was
shown that the effects on transport properties like
the electx'ical resistivity, for example, are the
more pronounced the lower the dimensionality of
the system. Therefore, the A. I5 compounds seem
to present good conditions for studies of the su-
perconducting order-parameter fluctuations.

In this note we present a semimicroscopic cal-
culation of the nuclear relaxation time T, in su-
perconductors above the transition temperature.
We limit ourselves to the so-called classical crit-
ical region of f1uctuations. %6 extend the Asla-
mazov-Larkin' (AL) theory to calculate T, by us-
ing a simple BCS model for superconductivity.
The crucial step, taking into account the linear
chain structure of the transition-metal atoms in
the +15 cx'ystRls, ls made only ln the flnR1 pRI't
of the calculation, when the fluctuation propagator
of the order-parameter field is assumed to be

one-dimensional.
The nuclear spin relaxation time can be written

in terms of the electron spin-spin correlation
function X(k, ~) as

(T,T) '~rmgk)((k, (u).

The contribution to T, ' of the superconducting
order-parameter fluctuations is then given by

(
1 1 . 1

lim —;ImL(u),Tlr f/UC) Tlr O M ~O ~(ONO

where (1/T, T), results if one neglects order-pa-
xameter fluctuations, N, is the electron density
of states at the Fermi energy, and

I( ) =Z-. )(~ ...(k, ) =5-&.- ~ -,')."""
Here sI, is the electron spin density operatox. To
calculate the electron spin correlation function
we employ the standard thermal Green's-function
diagram technique. ' As shown in Figs. 1(a) and
1(b), each diagram contributing to )((k, cv„)starts
and ends with an "external" vertex which carries
k, cu„andfliPs the spin of the electrons, thus cre-
ating an electron-hole pair with opposite spins„
This is in contrast to diagrams which appear for

(a) I,u)s

(c) o{q,&

(e)

FIG. l. Qx'RPhicRI ljIQstx'Rtions of tile vaxiOQs contx'1-
butions to y(k, m), (g) contributes only to electrical re-
sistivity (Ref. 9).
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the electrical resistivity calculation, ' where the
electron-hole pair is created with the same spin.
This fact is of considerable importance in com-
paring the effect of fluctuations on the resistivity
and 1/T, . To obtain the normal-state spin-cor-
relation function 1,(&u), which neglects Cooper-
pair fluctuations, we connect diagrams 1(a) and

1(b) and find Iml o(cu) = wmlVo .
To lowest order in the Cooper-pair fluctuations,

we insert between diagrams 1(a) and 1(b) in all
possible ways the Cooper-pair fluctuation propa-
gator D(q, &u ) shown in Fig. 1(c). Here q and &u

are the "momentum" and "energy" of the particle-
particle ladder of opposite spins, and the dashed
lines correspond to the BCS electron-electron
interaction with coupling strength g. The leading
contributions to y(k, ~„)due to fluctuations are
depicted in Figs. 1(d), 1(e), and 1(f).

To indicate the sign of the contribution to y of

each diagram, we have given also the details of
each diagram. We notice that the diagrams 1(d)
and 1(f) are encountered also in the resistivity
calculation, and they carry the minus sign since
they involve a closed fermion loop. The diagram
1(f), however, has a plus sign; this is opposite
to the sign of the cori espondlng AL dlagl aIQ
which is shown in Fig. 1(g). We also notice that
the leading diagram of AL 1nvolvlng two fluctua-
tion propagators' does not contribute to 1/T, . If
we neglect higher-order diagrams involving
either self-energy or vertex corrections, and
limit ourselves to the lowest-order contribution
to X due to Cooper-pair fluctuations, then we ob-
tain

&&i..~(~.) = E D(q, ~.»;...(~.),

where, using the usual solutions,

E- ((u) = T' Q g G-((a )G- - ((u —(u )
~2 P~~2

(5)

1m'(~) =(~ X,') Vg(3)/~'T,

where & denotes the zeta function. If one uses the d-electron Green's function obtained from a tight-
bindi~g calculation, a similar I' is found but with different values for the constants. Now we return to
Eq. (2) define the enhancement factor 5= (1/T,)/(1/T, )„andobtain

5 =&Q-, D(q, o),

where A = V &(3)/m'T in the BCS model.
We next turn to the calculation of Q„D(q,0). First we consider an idealized system with three per-

pendicular families of noninteracting linear chains of cross section a' (a few angstroms in diameter).
Using the classical Ornstein- Zernike fluctuation propagator D(q) - [q'+ $ 2(T) ] ', where g(T) = g,[T,/
(T —T,)]",we write

"dq 1

Ã, (,'a' 2~ q'+ ] '(T)'

and obtain the one-dimensional BCS enhancement factor

x (Gp (co, —(u) G-„p,(u), +(u —cv,) —G~ ((u,)[Gp (~, +(u) + Gp (~, —(o)Jj.

We notice that the most divergent contribution to Eq. (4) comes from ~ =0, and that D(q, 0) is signifi-
cant only for q&g, ', where $, is the coherence length at T=O. Thus, we set q=o and ~ =0 in E,
evaluate it in the BCS model, and obtain after analytical continuation

3 vg(s) 1 T,
m T Noa go T T j

If we assume T, -10'K, N, =2 states/eV atom, a-5 A, and $, -50 A, we obtain

which is a good order-of-magnitude estimate for 6."'
A more realistic model should take into account the coupling between the families of chains. %e as-

sume that the generalized Landau-Ginzburg free-energy function has the form"

& = &(T)E I y; I
'+ &(0)n(T) E t; O, +y2 I 0; I

'+ w 8 I 80; /~; I',
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FIG. 2.. 2. Enhancement of the fluctuations of a coupled-
chain system over t ose o ' ' — n-h of an isotropic three-dimen-

the ratio of interchain to intrachaxnsional system. g is uie ra ~o o
coupling.

where qr,. is ethe order parameter of the 1th chain,
~ ~

and q plays the ro e o1 f coupling between chains.
and Barisic" applied this free-energy

function to predict an anisotropy in „,w
'

d in V Si" but forho ever, was not observe
Nb, Sn a similar approach app ears to account very

ll" f the anisotropy in tunneling experiments.
Using the fluctuation propagator resulti g

Eq. (11), we obtain

E-D(q, 0) =E;Z; 1/E, , (12)

E are the eigenvalues of th e 3x3 matrix
2 2 2 2 ( / )2wi 1th diagonal elements a q, + +

a ' To evaluatean od ff-diagonal elements —g a
t = '. For TE . (12) a cutoff is introduced a q, = f.,Eq

-T, the results are not sensitiv' e to the value of
the cutoff.

We now return to Eq. (7) and calculate the en-
ctor 6 for various values of pand a

=0.1 as a function of temperature. T e resu
6 '

th 'sotropic three-dimen-f 6/6' where is e io
~ ~

2 Values of g1 factor are shown in Fig. . Vasiona ac or,
ieldin a three--0.1 appear to be reasonable, yie ing

order-of-magni e e'tud nhancement of the effect
of fluctuations at T = T . There is no divergence
at T, for the coupled-chain system, them thus this
a roach is self-consistent (unlike the "pure" one-
dimensional system, which doe ps not ossess a

d' ontinuous super conducting transition at all).
=0 2 the effect of the fluctuations

is about half of a oth t f a "pure" one-dimensiona
stem. It is seen that even for rather strongsystem. is se

coupling between the chains q=s = 1) the fluctua-
nced b about an order of magnitude

over the isotropic case. This property o s rong-
1 coupled cross- i e c-1'nk d chains to retain their one-
dimensional properties has p

's been ointed out and
discussed in e .Ref. 7. Direct coupling between par-

1 ro-allel chains quenc eches the one-dimensiona prop-
erties much more effectively, as shown by Bar-
isic and Marce j .

able effect on the0 d s not expect a comparable e ec onne oe
1 resistance of the 415 compoun ds since

the electrical current is mostly ue o
duction electrons, and since the heavy d elec-
trons, locate on e id th linear chains, contribute
very little to the electrical current.

The Knight shift and 1/T, T of V and Nb consist
of several con ri u it 'b t'ons the direct s-electron

the d- electron orbital contribution,
the d-electron spin core-polariza ion con ri-and e -e

bution. Th's calculation applies only
' es the temperature-dependent partpart, which gives e

50 of theof 1/T, T in V,Si and V,Ga (roughly, 5 o o e
total contribution). When we coconsider the Al"

'n Nb Al the Nb 4d electrons influenceresonance in , , e

Al
b bl b hybridization with the A s an

Sp electrons, ant s and these in turn relax the
olariza-clei t rough h direct contact (Ss) or core po ariza-

iS ). The d electrons may also relax etion Sp . e
1

'
through core polarization. Accnuc el 1

4 the effect ofwork of Clogston and Jaccarino, thethe wor o
the 3d electrons on the NMR of the X atoms is
very large.
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An effect analogous to the fountain effect in superQuid helium has been observed in a
superconductor for the first time. A temperature gradient across a Pb-Pb point-con-
tact junction produced a small supercurrent, which was detected by measuring the asym-
metry of the critical current.

To fountain effect, or thermomechanical effect,
in superfluid liquid helium was discovered by Al-
len and Jones' in 1938. When two vessels contain-
ing superfluid helium are joined by a thin capil-
lary and a temperature difference is maintained
between them, an osmotic pressure difference is
set up because of the different concentrations of
normal fluid and superfluid in each. The osmotic
pressure difference drives superfluid from the
colder vessel to the hotter until a hydrostatic
pressure difference is set up which balances the
osmotic pressure difference. In the steady state,
normal fluid flows hydrodynamically from the hot-
ter vessel to the colder, driven by the hydrody-
namic pressure difference, and there is an equal
flow of superfluid in the opposite direction. This
steady-state counterflow is responsible for the
large thermal conductance of superfluid helium.
In very thin capillaries the flow of normal fluid
is greatly reduced, and the thermal conductance
appears much smaller.

0

The similarities between the superfluid proper-
ties of liquid helium and superconductors suggest
that an analogous effect should occur in a super-
conductor. ' In this Letter, we report the first
experimental observation of this analog.

In a superconductor, the analog of the hydro-
static potential difference observed in helium in
the presence of a temperature gradient is an elec-
trostatic potential difference. It is important to
realize that in any real metal the quasiparticle-
lattice scattering rate is much higher than the
quasiparticle-quasiparticle scattering rate. This
means that hydrodynamic flow of the quasiparti-
cles is strongly inhibited. " Thus the electro-
static potential difference only gives rise to a
small normal-fluid flow, and the hydrodynamic
counterflow of normal and superfluids makes only
a very small contribution to the thermal conduc-
tivity of a superconductor. This is analogous to
the case of helium in a pevy thin capillary, where
the normal fluid is essentially clamped.


