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If two laser beams have a difference frequency nearly equal to the plasma frequency,
nonlinear interaction resonantly excites longitudinal plasma oscillations. These then in-
duce transitions to other transverse modes. Nonlinear damping of the longitudinal mode
heats the plasma. The process is optimized by having parallel beams, equal laser in-
tensities, and damping equal to the frequency mismatch.

We propose a new method of heating a plasma,
utilizing the excitation of longitudinal plasma
waves by resonance with the difference frequen-
cies of a set of transvexse waves. The energy is
provided by two (nearly) parallel laser beams,
with frequencies u~, ~~, differing by approxi-
mately the plasma frequency: ~~ —co~, = ~~ + 4~,
with the mismatch b, ~ small (say, 10 '~~), and

The nonlinear interaction of transverse
and longitudinal waves [see Eq. (2) and the insets
of Fig. 1] excites a longitudinal wave, with wave
vector k, =k, -k, .„which is nonlinearly damped,
if its amplitude is sufficiently large. (There is
no Landau damping, since ol~/k~=c; collisional
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FIG. 1. Mode energy as a function of mode number
l =~, l~&, at several positions l fdefined below Eq. (3)).
In case (a), the laser intensities are equal (a = 1). In
ease (b), they are very unequal (u =10). The damping
rate is comparable to the mismatch (cosp =0.5).

damping is too weak for our purposes. ) This
wave in turn interacts with each of the two trans-
verse waves (1., I. —1) to produce two more at
k~ 2

= k~, -kp and k~+, = k~+ kp. When k~ and

k~, are nearly parallel, the new mismatches
6, =—&, —~, , —u~, determined by the dispersion
relation w, '= k, 'c'+ w~', are also small; other-
wise they are not.

In quantum language, a coherent set of photons
I. undergoes induced (by I. —1) decay into photons
I —1 and plasmons. The damping of the plas-
mons deposits energy irreversibly into the plas-
ma. Some of the plasmons, before they are ab-
sorbed, engage in further three-wave interac-
tions, inducing the decay of the photons I. —I
into photons I. —2, and so on, coherently cascad-
ing the photon frequency downward. Others in-
duce transitions upward in fx'equency, by con-
verting L, into I.+1, and so on. Because energy
is conserved in these intex'actions, and also the
number of photons is conserved, the process
must be preferentially downward, to allow for
the plasma heating. [888 curve 5 of Fig. 1(a) fol'
an example. ] For maximum efficiency, the down-
ward rate should be maximized relative to the
upward spx'eading. This is accomplished if the
two laser intensities are roughly equal, and if
the damping rate approximates the mismatch
[see Eq. (5)].

The resonant interaction between two trans-
verse waves and one longitudinal mode has been
studied by Kroll, Ron, and Rostoker, ' Tsytovich, '
and Wolff, ' among others. The fundamental equa-
tions for the interaction of the scalar potential
y(g, l) of the longitudinal wave and the vector po-
tential A„(z, l) of a set of parallel, linearly x-
polarized transverse waves are
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where we treat the unperturbed electron plasma as cold, uniform, and stationary, and ignore dissipa-
tion for the time being. To derive these equations, we use the invariance of the canonical x momen-
tum' to obtain v„= —eA„/mc. The I orentz force along z is thus

(e/c)v+, = —(e'/2mc')aA„'/az,

whence

4mn, ev, = —(a/az)(u~'[y+ (e/2mc')A„'J.

This is then inserted into the last term of

(a'/a t')a'y/az' = —(a'/at')Wane = 4me(a'/a taz)nv, —= (a/az) 4nn, ev, ;

~e have used the Poisson and continuity equations, and have dropped harmonic-producing' terms. In-
tegration with respect to z then yields Eq. (1). For Eq. (1b), we use the wave equation A„= —4mj„/
c = (4me/c)(no+ 5n)eA„ /mc, and replace 5n by —(4me) 'a 'p/az'.

The coupled equations for the wave amplitudes are obtained from (1) by setting

A„(z, t) = Q,A, (z, t) expi(k, z —
&u, t)+ c.c., p(z, t) = —ip, (z, t) expi(k~ z —tu~ t ) + c c.

Assuming that the amplitudes vary slowly, we obtain

(a/at+y)y, =z+,A,A, , *exp(—ib, ,t),

(a/a t+ c, a/az)A, = (K/l) [A „,q, *exp(- ib, +, t) —A, ,q, , exp(ih, t)],

(2a)

(2b)

Wp-=(~pa&/»)kp lv»l /4~-~p lail /»c', Wi=~& '[a(~'e)/»J(~~/c)'IAil /4~-&i'IAil'/»c',

where e(~) = 1 —cu '/~'. We note that Eq. (2b)P

conserves transverse action (photon number), stant action flux density Q,c,W, /&u, =-J, w e find
that Q/J = —v~d(l)/dz, where (l)(z) is the action-
weighted mean mode number. Thus, it is de-
sired to have (l) decrease as rapidly as possible.
Its derivative is given by Eq. (5). Similar con-
siderations apply to the initial-value problem,
where d(l)/dt is —to be maximized.

The set (2) has the characteristic rate' I',
= KAI = [Wg /(8nmc )] (dp/L but this is not the
actual rate, which is found below. In dimension-
less variables [t'-=I",t, z'-=I', z/c, 6'=-b/I „y'
:—y/I'„cp, '=—y, /A, ', A, '=—A, /A~'], Eqs. (2) re-
tain the same from [denoted (2') below], but with
x deleted. The boundary (or initial) conditions
are A~'(0) =1, A~, '(0)= oe' (a positive).

An explicit solution for the boundary-value
problem may be found, if all the mismatches are
set equal (b, ,-a); this is equivalent to ignoring
dispersion, which is not too bad if l»1. To be
consistent, we then set c,-c and l-I. in the co-
efficient of (2b). For time-independent A„ the
steady-state solution of (2a') is y, '(z', t') = (y'
—ia') 'B exp(- ia't'), where B =- Q,A, '(z')A, , '*(z').
Thus, y(z, t) is driven at the (common) beat
frequency cu, —cu, , = (d~+6, not at its natural
frequency &u~. Substituting y, ' into (2b'), we ob-

(a/at)g, W/~, = —(a/az)g, c,W, /~„

while the set (2a), (2b) conserves energy (with

dissipation),

(a/at)(W~+Q, W, ) = —(a/az)g, c, W, —2yW .

(Note that the longitudinal mode has zero group
velocity. )

We study here (a) the boundary-value problem,
in which two laser beams with steady intensities
cR~' and cWi, are incident on a semi-infinite
(z )0) plasma, and we look for quasi —steady-
state solutions as functions of z; and (b) the
initial-value problem, in which two laser modes
are present at I=0, uniform in space, with ener-
gy densities Si' and Wi, ', and we look for the
evolution as a function only of time. The full
space-time problem will be studied in a later
publication, together with the important effect
of plasma nonuniformity.

In the steady-state problem, the dissipation
rate is Q= 2yW~= —(d/dz)g, c,W„ from the energy
conservation law. Dividing both sides by the con-

where x = eu&~/2mc', and c, -=k,c'/&u, =c is the group velocity of mode l; we have set v, =l~~ in the co-
efficient of (2b), and have introduced a phenomenological damping coefficient y in (2a). The corre-
sponding wave-energy densities are
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l. dA, '/dz'= (y'+ i&') 'B*A),g'

We use (3) to show that dB/dz' vanishes, i.e.,
B(z') =B(0)= ne 'e. Introducing p -=tan '(b, /y)
and g-=2nL, '(y" +a") '~z'-=2nl. 'c '(y'+a') '~'

xl', 'g, and setting A, "—=A, 'expil(8 —p), we can
write (3) as 2dA, "/d&=A„, "-A, ,". This is the
recursion relation for Bessel functions, except
for sign. Hence, the solution of (3) satisfying the
boundary conditions yields

IAI, +n I
=~n + n ~n+I 2n(COSP)~n~n+I~

(Ai, , „'i'= n'J„'+J„„'+2n(cosp)J Z„

where the argument of the Bessel functions is f.
From Eq. (3), we may directly calculate the

evolution of mean' mode number (l)(z) =Q,l)A, ('(z)/
Q, [A J'(z). In dimensional variables, we find the
cascade rate

d(l) 1 y &un n 8'o

41.
' y'+ &' (1+ n')' mme"

where ~—=
WI, + Wz, , is the total input energy

density. We recall that F represents the rate of
plRBIIIR lleRtlllg, Rlld 1S to be maximized. (Note
that in contrast to I'„ it varies linearly with W'. )
For given W, it vanishes as n'-0 or ~, and is
maximized at e= 1. This is illustrated in Fig. 1,
which presents IA, 'I' versus l, at several g, for
the two cases n = 1 (W~,'= +'„') and n= 10 (W~,'
= 100 W~ ). The latter case evolves almost sym-
metrically about I. —1, and little heating results.
The former case is quite asymmetx ie, which is
desired. The dependence of I' on the damping
rate y is similar, F being maximized when y = h.
Tllls 1S evident fl'OI11 Eqs. (4), wh81'8 tile RsyI11-
metry between highex and lower modes is seen to
be proportional to cosp =y/(y'+ b, ')'~'.

Formula (5) leads to an estimate of required
laser intensity, for a criterion that (l) change by
unity in one centimeter, say. Taking L -10, y-4-10 'w~, u~-2&10" sec ', e-1, n-10"
cm ', we obtain W c - 10" W cm '. The longitu-
dinal field produced is then sufficient to produce
damping by parametx'ic instability, ' with y of the
order assumed. '

To study the effects of variable mismatch &,
(caused by dispersion), we have numerically
integrated Eqs. (2) for the uniform case (8/Bg
=-0). Of the several cases studied, we report
only the following: +~ was chosen to be 1,8 &10"
sec ' (CO, laser), and I.= 10. The initial power

LL Q(o" (p l4

P ( 4/cm~ )
lp le

FIG. 2. Fractional energy transfer as a Nnction of
laser power density.

density P (expressed in W/cm') was in modes 10
and 9, with cy'=0. 1. The damping coefficient
was chosen to be y = 10'P'~' sec ', corresponding
to y'= 0.3, and y/&u~ = 0.005 at 10"W/cm'.

The mismatch A~ was adjusted for optimum
energy transfer. Because the mismatch 6, de-
creases algebraically with E, as a result of the
plasma dispersion, it is desirable to choose h~
positive. Then for higher modes, the mismatch
inexeases, and thus coupling to those modes is
inhibited; while for lower modes, the coupling
is enhanced as 6, decreases and passes through
zero to negative values. The best choice of A~
was in the range 0.01 & b~/u&~ &0.03. With this
choice, energy transferred to higher modes was
blocked, and eventually made to cascade back
down, with littler energy remaining in those
modes. Figure 2 shows the fractional energy
transfer after a time interval t= 5y '. (For later
times, the transfer rate becomes relatively slow. )
We note that the effective threshold power den-
sity is 10"W/cm', for weaker power, the mis-
match prevents appreciable energy transfer.

When the calculation was repeated with 6, held
constant (i.e., neglecting dispersion), typically
0.3 to 0.4 of the energy remained in the higher
modes l &I., and did not cascade down. In this
and other respects, there was agreement be-
tween the time-dependent uniform ease and the
space-dependent steady-state case.

When the initial laser beams are not (nearly)
parallel, spontaneous frequency conversion to
other transverse modes will not oeeur because
of the large mismatches. The longitudinal mode
then eatalyzes the complete transfex' of action
from I. to I —1. For the antiparallel case, for
example, the longitudinal mode has k~=k~ -k~,
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as before, but now 1k~I= 2h~ = 2'~/c, whereas in
the parallel case h~= su~/c «2&v~/c. As a result,
the wave coupling on the right-hand side of Eq.
(1b), proportional to h&', is greatly enhanced.
To balance the advantage of enhanced coupling
are two disadvantages and one further advantage.
First, the damping rate may be greatly enhanced

by Landau damping (since now ~~/h~«c), beyond
the optimum y -h. Secondly, the further transi-
tion to 1. —2 cannot be induced by the longitudinal
mode k&, since this would require k~, =k~,

k 2k k or k - 3k violating the dis-
persion relation. This means that the further
decay must be induced instead by a third laser
beam 1.—2 in any desired direction, and the cor-
responding longitudinal wave excited, k~' =k-,
-k~ „ is not the same as k~. Thirdly, no ener-
gy is lost on up-conversion, since each transi-
tion must be seeded by its own laser beam.

The idea of using laser beats to heat a plas-
ma was suggested to us by M. Rosenbluth and
N. Kroll. Discussions with Y.-R. Shen and

C. Townes were helpful for orientation. S. Bod-
ner, %. Kunkel, D. Nicholson, and R. Riddell
provided us with good advice and encouragement.
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An investigation is made of the effect of order-parameter fluctuations on. the nuclear
relaxation time of supereonducting A15 compounds. It is found that because of the one-
dimensional chain structure of these compounds the fluctuations make an important con-
tribution to the NMB.

The nuclear relaxation time T, in superconduct-
ing compounds with the composition V,X (X = Si,
Ge, etc.) was observed' to display an anomaly
above the transition temperature T;, 1/T, T was
observed to increase by about 20k at tempera-
tures a few degrees above T, [(T- T,)/T, =0.2].
At the time at which these observations were
made, it was not clear to what cause this anomaly
should be attributed; V,Si undergoes a martensit-
ic transformation' at about 21 K, and this trans-

formation causes anomalies in the Knight-shift
and quadrupolar interactions, ' and therefore an
anomaly in 1/T, T is not too surprising; V,Ga is
rarely pure and usually some Ga atoms occupy V
sites; in addition, all these compounds display
anomalies in their electronic properties whi. eh
may be attributed to a sharp peak in the density
of states function, ' and conceivably an anomaly in
1/T, T may be attributed to this peak. Recently, '
experiments on Nb, A1 indicated a similar anomaly


