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by the electrons changes in time as a linear func-
tion of cos(n&u*t) and sin(ncu*t), where n=0, I,
2, ~ ~ ~ . This in turn will appear as a force acting
on the electrons with the same time dependence.
When Eq. (6) is fulfilled, co*=re„; otherwise ~*
represents a spectrum of radian frequencies.
Under the resonant condition of Eq. (5), one ex-
pects to get radiation having radian frequencies
cu„, 2~„, 3~„,~ ~ ~ . However, when Eq. (6) is
not valid, this effect mill tend to widen the fre-
quency distribution. Because of this nonlinear in-
teraction, rf radiation with wavelength A. can be
produced from a bunch of electrons with a scale
length greater than A..

The theoretical considerations and experimen-
tal results described here suggest a new mech-
anism for coherent rf emission. This mecha-
nism can be of some importance in explaining
nonthermal rf radiation from celestial objects. "
Some of the observed rf emissions from astro-
physical phenomena cannot be explained by any
simpler mechanism. " The rippled magnetic
field can be produced in astrophysical phenomena
by any one of several instabilities which have
been detected in laboratory plasmas.
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A spin-& Ising-model "metamagnet" is studied by the method of high-temperature ex-
pansions, The phase boundary in the H-T plane is obtained for a simple cubic lattic with
in-plane ferromagnetic interactions but between-plane antiferromagnetic coupling, and a
tricritical point is located. Along the critical line, the staggered susceptibility appears
to have an exponent ~ (consistent with the universality hypothesis), while at the tricriti-
cal point, the direct susceptibility shows a tricritical exponent of 2.

Griffiths' ' has recently called attention to the constant. "
existence of "tricritical points" in the phase dia- Previous theoretical work has been restricted
gram of metamagnetic systems. At the tricriti- to Landau's "classical theory'" or molecular
cal temperature T„ the phase transition changes theory, ' and some very recent Monte Carlo stud-

abruptly from second to first order. Such behav- ies of models with tricritical points. " Riedel"
ior has been observed in real materials such as has presented a scaling theory near the tricriti-
FeCl„' Ni(NO, ),~ 2H, O, ' and dysprosium aluminum cal point consistent with experimental work on

garnet. ' The tricritical point is characterized by He'-He' mixtures, "a system whose phase dia-
its own set of exponents; in particular, we may gram is thermodynamically closely analogous to
expect that critical exponents will change discon- that of metamagnetic materials. An Ising Hamil-
tinuously at T, from their values on the second- tonian has been proposed for the He'-He' system"
order phase boundary, along which they remain and analyzed by series expansions, ""although
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the series work gives no values for tricritical
exponents.

In this note we give the phase boundary and re-
port an estimate for the tricritical susceptibility
exponent for a three-dimensional model "meta-
magnet" using high-temperature expansions. The
specific model we consider is an S= ~ Ising mod-
el on a simple-cubic (sc) lattice with lattice an-
isotropy and in the presence of an external field.
The Hamiltonian is

X= —Z„, Q s,s,. —8, Q s,s,. —pH+s. ;, (1)
i

where s =+1, the first sum is over all nearest
neighbor spins in the x-y plane and the second is
over nearest neighbors coupled in the z direction.
To simulate a metamagnet, we take J„,)0 (ferro-
magnetic), and J, (0 (antiferromagnetic). High-
temperature series to eighth order in inverse
temperature were generated for the two-spin cor-
relation functions C, (r) -=(s,s-, ) —(s,)(s;) using a
computer program based upon the renormalized

linked-cluster theory of Wortis, Jasnow, and
Moore. " From the correlation functions, we
calculate series for the reduced susceptibility,

and reduced staggered susceptibility,

Here q; is a staggering index which is +1 for
lattice sites on even numbered planes and —1 on
odd planes.

The coefficients of successive powers of P-=1/
kBT for the spin-& Ising model are finite polyno-
mials in the variable tanh'(pgH), so fixing }'t—= ppH
and evaluating these polynomials enables one to
obtain exact information in the external field.
Thus y and y„are of the form

Q P„(tanh'It)P",
n=p

where I'„ is a polynomial of degree n+1 in tan'h.
In Table I we list the coefficients a„and b„ through

TABLE I. Coefficients a„and b„ in the series (4} and (5}for the susceptibility and
staggered susceptibility, respectively. Here the expansion variable X denotes tanh2h
= tanh (pH/%AT}, Single asterisk denotes uncertainty in last digit. Double asterisk
denotes uncertainty in last two digits.

a = 1-X
0

a = z -8X+6X2
1

2 3
a = -2 + 2X + 10X —10X

2

a = -1,4 + 200X -566X + 576X2 3
3

-196x

a = -42 + 1026X -5144X + 10040X2 3
4

-85Z6X + 2646X 5

a = -46 + 1960X -16814X + 56256X2 3
5

5-88048X + 65040X -18348X

a = -90 -1014X + 10434X -594X2 3
6

-105900X + Z37436X -Z002Z8X

+5 9956X

a = Z -19304X + 3Z086ZX -1757952X2 3
7

+4597716X -6479120X + 5015212X

-1984Z56X + 306840X

a8 = -1402 -Z8478X + 1155680X -10011488X2

+ 4010791ZX -88872520X + 115745632 X

-88314336 X + 36561936 X -6342936 X

b =1-X
0

b = 6 -16X+10X2
1

b = 30 -134X + 186X -82X2 3
2

b = 150 -880X + 1894X -1760X2 3
3

+ 596x4

b = 726 -5150X + 14600X -20536X2 3
4

+14Z58X -3898X

b = 3510 -Z8848X + 99166X -18Z208X2 3
5

+ 188208X -103Z96X + Z3468X

b = 16710 -157342X + 635378X -14Z6906X2 3
6

+1 9Z4948X -155 9284X + 7 01 564X

-] 35068X

b = 79494 -8437Z8X + 393Z594X. 2
7

-104930Z4X + 17509596X4

-18699904X + 1Z478036X5

-4755072X + 79Z008X

b = 375174 -4445438X8

+23579488X -7339Z864X

+147460232X -197 953224X

+177Z51104 X -101949760 X

+34145680 X -507039Z X
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order n=8 in the susceptibility series and the
staggered susceptibility series, respectively,

g=k~Ty/Np'= Q a„tanh"P,
n=o

(4)

g„=kBT)t„/Np'= Q b„tanh"lI,
n=o

where we have changed the expansion variable
from P to tanhP. To the best of our knowledge
these are the first high-temperature series ex-
pansions for inequivalent bonds (Z„cJ,) in a mag-
netic field. Pr evious Isi.ng-model high-tempera-
ture series have been for isotroPic lattices in a
finite field"'" or for anisotropic lattices in zero
field. "

(i) Location of critical line and staggered sus-
ceptibility. —The strongly divergent quantity
along the second-order line separating the anti-
ferromagnetic and paramagnetic phases is the
staggered susceptibility. Accordingly, the y„
series was evaluated for an extremely wide range
of values of the parameter h = PpH and series
analysis was carried out by Pade approximants
and other methods. It was found that convergence
improved after a bilinear transformation" was
carried out on the original high-temperature ex-
pansion variable.

For all but the largest magnetic fields (specifi-
cally, for pH, s 1.7) we found the exponent de-
scribing the divergence of p„ to be very nearly
1.25, thereby corroborating the prediction of the
universality hypothesis, '

(6)

In order to obtain a better estimate of the loca-
tion of the critical line, we assumed the validity
of (6) for those larger fields for which the series
were less regular. The resulting phase boundary
is shown as the solid curve in Fig. 1, with pre-
cision generally better than the size of the points,
and with best precision at small fields.

(ii) I,ocation of tricriti cal point and tricritical
susceptibility exponent .T—he hooking around of
our calculated phase line below kBT, =2.60 (cf.
dashed curve in Fig. 1) is clearly unphysical and
represents the failure of high-temperature series
where the transition becomes first order. Simple
energy arguments give the T = 0 critical field to
be pH, =q, VI (=2 for the present problem), where
q, is the coordination number in the z direction.
A curve from this point joins the second-order
line smoothly at k&T =2.60+ 0.05, which is the
region wherein we identify the tricritical point.

The direct susceptibility series are quite irreg-
ular and do not lend themselves to the usual meth-
ods of analysis. Pade approximants to logX were
fairly inconclusive, but more convincing evidence
was obtained by raising the original series to var-
ious powers, and doing a full eighth-order Pade
analysis on the resulting series. It was expected
that the Pade approximants for the correct expo-
nent at the tricritical point would converge well
and reproduce the poles given by the y„series
along the same gH/kBT path. " Accordingly, we
raised the p series to a wide variety of powers,
and found best consistency with a power of 2. In
particular, the roots from the y' series matched
to within l%%uo the roots arising from the y„series
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FIG. 1. Phase boundary for Ising-model metamagnet on sc lattice with in-plane interaction J~=+1, between-
plane interaction J»=- 1. The second-order portion of the phase line is shown solid, the first-order portion is
shown dotted, while the spurious hooking near the tricritical point is shown dashed.

60



VOLUME 29, NUMBER PH YSICAI, RZVrzw I, z TTSRS 3 JUI,V 1972

analysis, while powers other than 2 led to roots
which disagreed mith the X„series. Moreover,
series convergence was best for y'. Therefore
we are led to conjecture that along the path }IN/
kBT = }IH,/kBT, = 0.—72,

X-(T-Tl) "'.
We briefly compare our results with certain

predictions of mean-field (MF) theory '.Mean-
field theory predicts that the phase boundary
near the Neel temperatuxe T& is described by a
square 1am,

(llII)'=A@ [7„—T,(H)],

with amplitude A = 3.55. We find that the shape
of the phase boundary predicted by series extxap-
olat10118 18 also described by (8) foI' }Iaaf & 0.8,
with A'""'= 3.57+0.05. Of course, the absolute
values of T~ differ, with Tg ——6, and TN"'"'
=—4.51. Moreover, despite the similar shape of
the phase boundaries at small fields, we find the
ratio of tricritical to Neel temperature to be con-
siderably smaller than the prediction of mean
field theory,

Finally, MF theory predicts a finite susceptibili-
ty as T -T, from above, in contrast to (7).

One would naturally wish to have a gauge for
just horn much confidence one should place in re-
sults of series expansions, especially mhen they
are applied to a new situation such as the meta-
magnet (for which no other "nonclassical" calcu-
lations have been performed). To this end, we
also applied the same methods to an "nnn" model
with nearest-neighbor antiferromagnetic and next-
nearest-neighbor ferromagnetic interactions. "
This model also exhibits txicritical behavior, and
very recent Monte Carlo calculations" give a tri-
critical susceptibility exponent of 0.29+ 0.18. Our
high-tempexature series give y, = &, in agreement
with" the Monte Carlo work and different from
the exponent for the metamagnet model. Other-
mise, we find the same qualitative features for
the nnn model as for the metamagnet. This fact,
together mith the fact that we find quantitative
agreement with Monte Carlo calculations on the
nnn model, leads us to believe that the methods
used on the metamagnet are worthwhile.
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Positron-annihilation lifetimes were measured in pure aluminum and in aluminum-1. 7
at.~la zinc at temperatures between 20 and 550'C. The data were analyzed using an ex-
tension of the trapping model to obtain the vacancy formation energy in aluminum I&
=0.62+0,02 eV). Under certain restrictive assumptions the binding energy of vacancies
to zinc atoms in aluminum was found to be E&=0.019+0.004 eV. A relaxation of these
assumptions yielded only an upper bound (Es & 0.04 eV) .

A complete understanding of defects in metals
requires knowledge of the sign and magnitude of
the interaction between vacancies and impurities.
Until recently it has been generally assumed that
vacancies and impurities are bound to each other,
but the experimental values of the binding energy
in a given alloy can vary from 0.0 to 0.5 eV.
There has been a growing feeling that the larger
values are incorrect because they were often ob-
tained by quenching techniques where vacancy
and impurity clustering effects could lead to
higher apparent values for the binding energy.
On the other hand, the only equilibrium measure-
ments to date have been performed at high tem-
peratures where vacancy clustering causes dif-
ficulties. "

Positron-annihilation methods eliminate the
problems mentioned above because they are per-
formed in equilibrium at temperatures where the
vacancy concentration is much lower. Positrons
have been shown to be quite sensitive to vacancy-
type defects in metals, ' and details of the annihi-
lation process have been used recently to deduce

the vacancy formation energy in aluminum (E~
=0.66+0.04 eV) using 2-y angular-correlation
methods. '

In this Letter we report the use of positron-an-
nihilation lifetimes to measure the binding energy
of vacancies to zinc atoms in aluminum. We
show for the first time that it is possible to ex-
tend the trapping model to include the effects
caused by the presence of vacancy-impurity com-
plexes. As a consequence of this inclusion, the
vacancy-impurity binding energy is extracted
from the analysis. Because of the lom concentra-
tion of vacancies at the temperatures employed,
analysis of the data also has been extended to in-
clude the contribution to positron trapping that
arises from dislocations.

Standard delayed-coincidence lifetime measure-
ments were made using —,'-in. cylinders of KL-
236 plastic scintillator, RCA 8575 photomulti-
pliers, and integrated-circuit constant-fraction
discriminators. ' Instrumental resolution was
typically 0.240 nsec full width at half-maximum
for a Co' source with energy windows set at


