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The theory of the three-wave parametric instability for weakly inhomogeneous media is
derived with an application to laser pellet irradiation.

We consider a plasma slab whose properties vary with x. It supports three waves described by am-
plitudes

A. =a.(x, t) exp[i(cu t-k'.x) —i fo LA;(h) dh]+c c. (I)

with M, (0) =+~; =pk,. =0. Thus at x. =0 the three waves have frequencies v and local wave numbers k
which obey the condition for three-wave parametric instability in a homogeneous medium. bh,.(h) is to
be determined from the local dispersion relation for a single wave in the inhomogeneous plasma, while

the a's are slowly varying coefficients due to the wave interaction. For the sake of definiteness we

consider the case with ~, k, and 4k real, and wave 3 is considered to be the pump wave of fixed ampli-
tude. The motion for small amplitudes is now described by a pair of coupled equations2:

Ba, /Bt+V, (Ba, /Bx') =yoa, * exp(i fe vdh) (»)

Bas*/Bt+V, (Ba,*/Bh) =y~, exp(-i fo edh), (2b)

with V,. the group velocities of the waves, a =P,dA, , and y, the growth rate of mode amplitude for a
homogeneous plasma. We consider only the usual unstable case, yo real and positive. These equa-
tions would hold equally well if the right-hand side were due to the beating of two or more pump waves.
Because of the rapid variation of the phase factor it may be considered as the only x'-dependent param-
eter. This will be true when plasma properties vary little over a wavelength. Small wave damping
terms could also be introduced without affecting the treatment. Laplace transforming in time with p

the Laplace transform variable, neglecting initial values, eliminating a2, and putting

a, = exp[i fo 2~dh ———,'p*(1/V, + I/V, )h] g*,

we easily find

$"+(4[tc+iP(Vi —Va )] —2idtc/dx —yo /ViVgg =0. (3)

lf this ~q~ation has a well-behaved solution with Re(p, ) & 0, then p, will correspond to the eigenvalue
«r a temporally growing mode. If no such po exists, then only finite spatial amplification can occur
which we may study by including a source term in Eq. (3) corresponding to spontaneous emission of
waves. We note that since ~ increases with x the possible asymptotic behaviors at infinity are a,
=exp[(-p*/V, )x] and ai =exp[if(a dx' —(p*/V2)x']. Since Re(p)&0 we see that if ViV2&0 both solutions
are badly behaved at either plus or minus infinity and no temporal normal modes are possible. If V~

&0, V, &0 then a well-behaved solution might be possible, namely, a~ for x»0 and a~ for x«0, the
question being of course whether the joining conditions near the origin permit this solution. We must
now specialize to a particular dependence for ~. As K =0 at x =0, the usual case is the linear one, v

= w'(0)x. We will see that no purely growing modes are possible in this case, and hence we will discuss
later the case x = ~"(0)x. /2 which might come about either if the interaction region is at a maximum of
density or for special cases of the dispersion relations of the waves.

For z = v'x', a simple transformation, v'(0)x. +i(ti/Vi -p/V2) =/&'(0)h'', reduces Eq. (3) to the well-
known parabolic cylinder equation. We have seen before that in general no well-behaved solutions ex-
ist if V,V, & 0, but it is also well known that no solutions going like exp[i(vh'' /4)] at +~ and exp[- i(~h'' /
4)] at -~ exist for the parabolic cylinder equation. This will be easily understood when we discuss the
WEB analysis below. Hence only spatial amplification is possible. For this purpose we may choose
P=e where e is a small positive number to give the proper behavior at ~. We also suppose lyo /ViV21
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» I ~ I as will be necessary for sizable amplification, allowing the neglect of dv/dx in Eq. (3), which
becomes

g "+ (—,~"x"—yo'/V, v, )$ = 5(x.), (4)

where for simplicity we have taken the source at x''=0.
We consider first the case V„V,& 0. Then from the boundary conditions we know that /=0 for x''& 0.

Beyond the turning point x, = 2y, /&'(V, v, )i'2 the solution is oscillatory while between 0 and x, it has the
approximate form sinh[fo[y, /V, V, -4v' x )" dx). There is thus a net e-folding by

f, '[y, '/v, v, .'-~ "-~')"2e~ =,'~y, '/V, V,. ~.

We would have obtained twice the amplification by putting the source at —x,. Finally, since we are
usually interested in the e-folding of intensity rather than amplitude we introduce another factor of 2 to
get for the peak intensity of oscillations

I= Io exp[27l (y,2/V, V2&') ], (5)

where Io is the nondriven, thermal, source intensity. For effective growth then y02/V, v,v' & 1. In other
words, the wave must grow substantially during the time it propagates to the point where the phase
mismatch fed' is substantial.

In the case V,V2& 0 the argument is a little more complex. The turning points of the equation are now
on the imaginary axis. For small p of order e the real x axis is displaced slightly above the real v'
axis and the proper behavior at +~ is obtained by requiring that in the first and second quadrants we
have the solutions gz and iP» which decrease away from the turning point +ir, . Since these are differ-
ent solutions having a common boundary (the upper imaginary axis), no solution to the homogeneous
equation, i.e., no purely growing modes are possible. Returning now to Eq. (3) with the source we
may write (=A [(1(v)/$1(0)) for v & 0; (=A[(»(x')/(1, (0)] for w & 0 with

w =q, (0)p„(o)/Iq, (o)y„(0) —c„(0)q,(0)).

Normalizing g, and g» to go like x' "' exp(+ v'x'/4) for large Ix'
I we may evaluate the Wronskian along

the upper imaginary axis to be of order unity. We then find

P(0)A(~, ) = exp[f0 'ty. 'll vp. .l
—-'~ "v')"' A]

by integrating along the imaginary axis from the turning point. We find again Eq. (5) for the amplifica-
tion and we conclude in general for the linear case

f=f, exp[(2~)y, '/I V,v,~'I). (6)

We turn next to the quadratic case tc =~ "x2/2. As discussed earlier the possibility of a normal mode
exists only if Viva& 0 and we consider only this case. We will again assume large yo so the term d~/dx
in Eq. (3) is negligible. Hence we have

y-+&-.'[-,'~-~2+ ip(l v, -'I +
I v, -'I)) '+ y, '/I V,V,I] = o. (7)

Now, four turning points exist at

~ =~ &(2/~-)[- ip(l v, 'I+
I v, 'I) ~ 2iy, (l V,V,I)-"'1&"'.

We now look for an eigenvalue P such that two of the turning points lie close to x. =0, i.e.,

p = 2yo[(l V,V, I
)"'/(I V, I

+ I V, I))(1 —&),

with 6 assumed small, thus reducing Eq. (7) to

q" + 4{[2~"x'+ 4iyo(l v,vml) )[2m "x' —2iy+(I v,v2I) ))y = o.

(6)

Near the inner turning points this is simply the harmonic oscillator equation whose solution falling off

away from these turning points is (=exp(-Xx' /2), with A, =exp(-im/4)( py") "(IV,V21) " and

6 =([exp(- im/4))2 ~"](~")"'(y,'/V, V,) "'.
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Hence we have indeed found a temporally growing mode in this case for sufficient yo, although we have
not yet examined the behavior as l b, I-1, where WEB methods are inadequate.

Finally, it is easy to check the validity of our solution by looking at the anti-Stokes lines coming
from the inner turning points of Eq. (10) and noting that the regions in which our decaying solutions
are valid do in fact contain the real axes for large I xl.

As an appllcatlon %'e consider the absorption of 11ght from an 1ntense laser by a solid deuter1um pel-
let. As the light is absorbed the outer portions of the pellet are blown off so that the laser sees at
nearly normal incidence a plasma profile of increasing density, running from zero to solid density.
We may expect various parametric instabilities, ' leading to possible absorption of the energy when the
light reaches a region of sufficient density that frequencies of natural plasma modes become compar-
able with the laser frequency ~o.

W'e consider here the process where the electromagnetic wave drives two Langmuir oscillations with
frequencies u&,. = [+~2+39,a(To/m, )]~'a, where &o~ = [4wno(x)o /m, ]. The laser would satisfy the excitation
condition no= 2~~ at a region of lower plasma density then that given for other parametric modes (&uo

= ~~), and hence might be absorbed before reaching the higher-density plasma.
In a homogeneous plasma the maximum growth rate occurs for plasma oscillation wavelengths some-

what shorter than that of the incoming light, and wave vectors oriented at 45 to that of the light, in
the plane determined by its polarization vector and wave vector. The growth rate is given by~

y, ' = —,'m(e '/m'c')P, (12)

with P the rms incident power per unit area.
It does not appear possible in this case to satisfy x'= 0, and so we may now apply Eq. (6) to deter-

mine the spatial ampbfication in the inhomogeneous plasma, obtaining as a condition for excitation

~am'(e /m c')'(m c'/T, )PL, /~, » 1,

where L =[(1/no)(dn, /dx)] . For the case of a 10-p.m (CO,) laser, expressing L, in millimeters, T, in
keg, and P in units of 10"W/cm' (1 kJ/mm' nsec) the condition becomes 600I'I /T» 1, and would
seem well satisfied. for parameters suitable for fusion initiation. Thus, at least as judged from the
viewpoint of linear theory, the excitation of two-plasma oscillations would appear to be an important
absorption mechanism.
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