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Based on considerations of the rotating ideal Bose gas it i,s suggested that the quan-
tized vortex lines can enter the superfluid contained in a rotating bucket through an adia-
batic transformation of the ground state,

It is now generally accepted that the behavior of
He II ln a rotating bucket can be understood by
imposing the Onsager-Feynman quantization con-
dition on the superfluld velocity ln the Landau
two-fluid equations. By purely thermodynamic
considerations one then finds that the normal fluid
is in solid-body rotation, while for increasing an-
gular velocity v there appear one, two, three,
~ ~ ~ quantized vortex lines in the superfluid in
definite positions and rotating with the normal
fluid. ' In this picture, which accounts at least
qualitatively for the experimental results, the
successive quantum states of rotation are ther-
modynamic equilibrium states and should there-
fore be considered as different Phases. The fun-
damental question remains: How can one under-
stand the successive phase transitions? How are
the successive vortices produced?

The most widely accepted view is that the quan-
tized vortices are collective exeitations of the
condensate similar to the phonons and rotons but
of much higher energy. The high energy prevents
the direct formation by thermal fluctuations, ' and
Iordanski' has proposed a nucleation mechanism
according to which the origin of the quantized vor-

tices is understood in a similar manner as the
formation of liquid drops in the classical vapor-
liquid transition. For the appropriate value of ~
the vortices grow from small quantized vortex
11ngs and then move to thell equlllbrlum posi-
tions by hydrodynamical forces.

Here we would like to propose another, more
purely quantum-mechanical explanation for the
origin of the vortex lines, which is suggested by
considering an ideal Bose gas in a rotating cy-
lindrical bucket. Blatt and Butler' have shown
that a rotating, ideal Bose gas undergoes phase
transitions similar to those occurring in rotating
He II. Their main result is shown in Fig. 1, where
the total angular momentum A is plotted against
the angular velocity ~ of the bucket. At a series
of critical speeds of rotation c'„~„~~ ~, the an-
gular momentum increases by NP, where No is
the number of condensed particles. In general,

0 = 2(V- No)mR'&u+Nolh,

where N is the total number of particles, m the
mass of a molecule, and R the radius of the buck-
et.

One easily sees that the contribution of the ex-
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where k» ——1.84 ~ ~ ~ . If one calculates with (5) the
probability current density J of the ground state,
it will have only a 8 component. Putting

FIG. 1. The angular momentum & versus the angular
velocity co of an ideal condensed Bose gas in a rotating
cylindrical vessel.

g, = C,J,(k„r/R)e'8, (5)

cited particles (N- No) is as if they were in solid-
body rotation. The centrifugal density distortion
is negligible, since ~ is assumed to be of order
8'/mR'. The contribution from the condensate for
~, &~ &~„,is what one expects from a quantized
vortex line of strength lh/m on the axis of the
bucket. This can be seen as follows: The Bose
condensation takes place into the single-particle
state, which is the ground state of the Hamilto-
nlan

(2)

effective in the rotating frame of reference. In
(2) K, is the free-particle Hamiltonian and L the
angular momentum operator around the axis of
the bucket. The eigenvalues of H are

EI = 6p —S(dl

where k stands for the three quantum numbers n,
l, m appropriate to the cylindrical geometry and
the &„are the eigenvalues of 0,. The eigenfunc-
tions are the same as those for the stationary
Hamiltonian H~ and are given by

q„=C,Z, (k„,r/R)e" cos(wmz/d),

where C~ is a normalization constant and d the
height of the bucket, and where we have assumed
as boundary condition that the normal derivative
of g is zero at the boundary. ' If ~ & co, the ground
state is k = (0, 0, 0) and the eigenfunction of the
condensed particles (superfluid) is constant. For
~ =~, there is an accidental degeneracy between
the states k = (0, 0, 0) and k = (1, 1, 0) and for &o & &u,

the state k = (1, 1, 0) becomes the ground state
with the wave function

one finds

v, =I/mr

which is the velocity of a vortex on the axis of ro-
tation with circulation k/m.

In this way it goes on. The series of critical
velocities ~& is determined by the increasing ser-
ies of r.oots k» by

co, = (k/2mR')(k„' —k. . .) .

At every , there is a degeneracy and for high-
er ~ a new lowest state with a higher value of l
develops corresponding to a vortex line on the ax-
is with circulation lk/m. This accounts for the
discontinuities in Fig. l. .

There is therefore a remarkable similarity
with the behavior of rotating He II.' In particu-
lar, for the Bose gas, just as for He II, there is
a first critical value of ~ below which the conden-
sate stays at rest. In fact even the values of ~,
are not too different from the observed critical
values in He II. One should ask therefore how
for the ideal Bose gas the successive vortices
are produced, with the hope that this too might
give insight into the behavior of He II.

The importance of the ground state is of course
a consequence of the Bose statistics and can be
justified by considering the canonical partition
function (P = 1/kT')

Q (N, V, v) = g ' exp[- P Q n„(e, —h&u l )]
&&a)

(6)

(or for more details the corresponding density
matrices), which is assumed to describe the equi-
librium state in the rotating frame of reference.
Here the summation over the occupation numbers
n„ is restricted by the condition Pn~ =N, which
is denoted by a prime. One shows that for large
N and V= wR'd, above a critical density, the ground
state is macroscopically occupied by N, particles,
while the remaining N- No particles are distribu-
ted over the excited single-particle states and
represent the normal fluid in solid-body rotation.
It is clear therefore that at the critical angular
velocities co, , where the ground state is degener-
ate, the effect of a small perturbation which will
break the degeneracy may be crucial. As the de-
generacy is a consequence of the cylindrical sym-
metry, it is of special interest to investigate the
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that for ~ «~&, f 0, while for ~»+„ f-l. De-
fining the corresponding velocity field as before,
or equivalently by the Madelung relations, '

FIG. 2. The effective energies Eo and E~ for the two
lowest single-particle states without (dashed line) and
with (solid line} a "bump" on the wall of the rotating
bucket.

effect of a small "bump" on the wall of the rotat-
ing bucket, ' Such a bump can, for instance, be
represented by a potential V(r, 8) which has a
small constant value 6 in a cylindrical strip along
the wall of the bucket (with cross-sectional area
A) and is zero otherwise. The effect from first-
order perturbation theory on the eigenvalues Eo,
E, of the two lowest states is shown in Fig. 2.
With no perturbation E, and E, cross (are degen-
erate) at &u„but with the bump they become. the
solid lj.nes. The ground state 18 therefore no long-
er degenerate, and it is important to note that
even near ~, the splitting between the two levels,
although small (because A5 «I jm), is not ther-
modynamically small (because V is independent
of z).8 One can show as a result that for large 8
and d, only the lomest state is macroscopically
occupied while E, merges with the other excited
states.

Next let us consider what happens when the buck-
et is brought from rest slosoly into r'otation. From
the adiabatic theorem one can conclude that if e
varies very slowly, the occupation of the energy
levels will not change and the wave functions will
change continuously. In particular, the wave func-
tion for the condensate at rest ($0= const) will
smoothly transform into a wave function which
for &o»~, will be close to the wave function g, .
Since we saw that g, corresponds to a quantized
vortex on the axis of the bucket, one can say that
in this case the vortex enters the fluid by an adia-
batic transformation of the ground state. This
can be seen in more detail from the wave function

P for the ground state for ~ near &e, . In the ap-
proximation where one only includes the two low-
est states in the perturbation expansion, one has

where f depends on &u and the perturbation such

Q(Ã, V, &) = P" exp[ —Pgn„e~], (9)

mhere nom the summation over the n„ is restrict-
ed by the two conditions Qn„=N and Agin~=O.
In fact for strict cylindrical symmetry one finds
from (9) the same results as from the Blatt-But-
ler Hamiltonian (2) and the partition function (6).
However if there is a bump (9) does not have any
meaning, because a rotating bump corresponds
in the rest system to a time-dependent potential,
so that one cannot speak of definite energy states

We believe that the reason for this dilemma
is that oozy for cylindrical symmetry is the equi-

one finds that (7) corresponds to an off-center
quantized vortex line, located at the node of g,
stationary in the rotating frame of reference and
therefore rotating with angular velocity + in the
rest frame. Thus as the bucket is brought slowly
into rotation the continuous change of f from 0 to
1 corresponds to the development of a node (vor-
tex) of the ground state at the wall which then
moves continuously to the center of the bucket.

This 18 the pictul e we propose for the origin of
the first quantized vortex. It mill be repeated at
the successive critical angular velocities co„cv„
etc. One can also say that at each ~, a new vor-
tex is formed by interference of two weakly cou-
pled, nearly degenerate states, and this shoms
the similarity with the Josephson effect. The
bump which couples the two states plays the same
role as the tunnel junction in this effect.

We conclude with three remarks:
(1) From time-dependent perturbation theory it

follows that for a sudden change of (d the eigen-
functions wi. ll not change. Hence if for ~ &w, one
suddenly stops the rotation, the first state &, will
remain macroscopically occupied, corresponding
to a metastable vortex at the center. Prom our
picture one expects therefore that metastable
states should be easily observable. "

(2) We believe that the qualitative features of
our picture of the ground state are independent of
perturbation theory and will remain true even for
a finite bump.

(3) Finally there is the following qualm. One
might think that, instead of (6), one could just as
mell start from the canonical partition function
in the rest frame,
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librium state stationary both in the rest frame
a,nd in the rotating frame. However, in general,
this equivalence is not necessarily true as the ex-
perience with rotating He II has taught us. We be-
lieve that in general one should start from (6) and

if need be transform the macroscopic properties
of the equilibrium state back to the rest frame.
A precise justification is lacking and wouM re-
quire in our opinion the solution of the problem of
the approach to equilibrium.

Finally one should emphasize that the picture
we have proposed has been justified so far only
for the ideal Bose gas. Whether some featux'es
of this picture xemain valid for the nonideal Bose
gas (and therefore for He ll) remains to be seen.
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The Debye-Wailer factox for bcc 4He is calculated at T =0 on the basis of a Hartree-
Jastrow ground-state wave function by means of a cluster-expansion technique and is
found to be a Gaussian function of the wave-vector transfer to within i%0. We discuss a
possible reason for the large deviations fx'om Gaussian behavior observed in recent neu-
tron inelastic-scattering expex iments.

In recent neutron inelastic-scattering experi-
ments on the bcc phase of solid 4He, Osgood et
a/. ' have obsex ved what appear to be anomalous-
ly intense one-phonon groups for wave-vector
transfers Q between 2.0 and 2.6 A '. In this re-
gion the sum rule'

J"„~S' (q, ~) d~ =(Iq'/2~)e (I)
is found to be violated by amounts up to a factor
of 4 when the conventional Debye model is em-
ployed for the Debye-%aller factor.

Wex thamer' has axgued that the Debye model
may not be appropriate here and that the sum
rule (1) should instead be used to determine an
empix'ical Debye-%aller factor from the first
moments of the observed one-phonon groups.
The results of his analysis are shown in Fig. I
together with the Debye model result for which
2W = 31'Q'/4mke at T = 0 and the Debye tempera-
ture is taken to be 8 = 22.5'K. Werthamer noted
that, relative to that for the Debye model, the
empirical Debye-%'aller factor is not only anom-


