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Effects of Unitarity on the Multiperipheral Model*
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Two models are presented for which the full multiparticle & matrix is unitary at high
energies. The production mechanism is based on the multiperipheral model. It is
shown that the elastic-scattering amplitude contains a new type of cut in the angular-mo-
mentum plane which is dynamical in origin. This unitarity cut plays a crucial role in en-
forcing the Froissart bound,

In order to construct a realistic model of dif-
fraction scattering and particle production at high
energies it is necessary to take into account the
constraints of multiparticle unitarity. In this note
we discuss two models for which the full multi-
particle 8 matrix is unitary at hi.gh energies. '
The production mechanism is similar to that of
the multiperipheral model to the extent that sec-
ondary particles are created and destroyed from
chains which are in turn exchanged between the
high-energy primary particles. However, in or-
der for the models to satisfy unitarity, it is es-
sential to take into account diagx'ams in which the
secondaries are produced or destroyed from
more than one chain. This means that the elastic-
scattering amplitude will have contributions from
checkerboard diagrams such as the one shown in
Fig. 1(b) as well as from the familiar ladder di-
agrams of Fig. 1(a).

The most striking new feature of these models
is the mechanism by which the Froissart bound
is enforced. The sum of the checkerboard graphs,
whose px'esence is required by unitarity, gives
rise to a square-x oot branch cut in the angular-
momentum plane. It should be emphasized that
this unitarity cut is dynamical in origin as op-
posed to the almost kinematical origin of the fa-
miliar Mandelstam cuts, which are also present
here, and the Amati-Fubini-Stanghellini cuts.
The unitarity eut is not present in any individual
diagram. It is associated with a divergence in
the perturbation series for the 8 matrix.

As is well known, the standard multiperipheral
and multi-Regge models do not have the con-
stx'aints of unitarity built in. As a result, they
ean give rise to a violation of the Froissart bound

by having a Regge pole to the right of 1 = 1.' In
the present case it is also possible for the ladder

graphs to generate a pole to the right of I = 1.
Howevex, in our solvable model we find that any
pole which passes /= I is always on an unphysical
sheet because it has passed through the unitarity
cut. Thus it is not possible to violate the Frois-
sax't bound. '

In addition to enforcing this bound, the unitarity
cut tends to decrease the importance of the multi-
Regge region of phase space. For most values
of the input parameters in our models, the multi-
Regge region yields a small energy decreasing
contribution to the total cross section. In our
solvame model the leading /-plane singularity
arising from the multi-Regge region can reach
unity only if the input pole is itself ~eater than
one. In this situation the Froissart bound can be
saturated.

I et us now turn to the specification of the mod-
els to be discussed here. Two types of particles
appear in our models. All states contain two non-
identical, spinless "nucleons, "plus an arbitrary
number of identical "pions. " The pions can be
created and destroyed, but not the nucleons. As
in the eikonal model, it is assumed that the nu-
cleons retain a large fraction of their longitudi-
nal momenta throughout the scattering process. '
%orking in the c.m. system, we take the 8-ma-
trix elements to be a function of F, the rapidity
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FIG, 1~ (a) Typical ladder and (b) checkerboard
graphs
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difference between the nucleons; B, the trans-
verse distance between the nucleons; and q, and

y„ the transverse momentum and rapidity of the
ith pion. In the eikonal approximation, the 8 ma-
trix is diagonal in F and B. Our model is now
completely specified by giving the amplitude for

the production of n pions off a single chain,
W„(Y,B;q„y„,q„,y„). By crossing symme-
try, 5'„also describes chains in which some or
all of the pions are incoming. It is convenient to
introduce a single operator Z„which handles all
possible production and absorption processes in-
volving n pions. Z„ is related to 8'„by

z„(Y,B) = — II dq,. —w„(Y, B; "~): II [a(q, , y, )+a'(- q, , y, )]:;s-1 i=1

where a and a are the pion creation and annihilation operators normalized such that [a', a ~]= 2(2~)'
x5'(q- q') 5(y -y'). The invariant phase-space element is dq —=d'qdy/2(2w)', and s =m'e", where m is
the nucleon mass. The creation and annihilation operators have been normal ordered in Eq. (1) to pre-
vent a r from being reabsorbed on the same chain from which it was emitted. Since we wish to con-
sider chains from which an arbitrary number of m's are created or destroyed, we introduce a Hermit-
ian operator and unitary S matrix by

Z(Y, B) = Q Z„(l', B), S(Y, B) =e' ~ ' & = Q — — —Z". (2)

Let us start by considering a model which is simple enough to be solved exactly. We take the exchange
mechanism between adjacent particles on the chain to be that of a fixed pole, and ignore correlations
between transverse momenta. The rapidities are taken to be strongly ordered. Working in the c.m.
system, we then write'

n

2, &.(Y, B;q„3„",q. , y. ) =e "f(B) II exp[~(y, -y;.,)]~(y, -3 .,) II g(q, ),

where yp p l p~ It is convenient to introduce creation and annihilation operators, c and c, de-
fined by

d
c=(ZY) "')/(- ),

— —g(q)a(q, y),

where the effective coupling constant A, is chosen so that [c,c ]=-1. Z(Y, B) and S(Y, B) can now be ex-
pressed in terms of the coordinate operator X = 2 '~'(c+ct),

Z(Y, B;X)=f(B) exp[(o. —1 ——,'X)Y+(2XY)"'X].

Clearly S is diagonal in this coordinate representation. %e shall be primarily interested in elastic
scattering, so the matrix element of S is needed between states with no pions:

(O~S(Y, B) ~O) =1+~is 'M»(Y, B) =m ' 'f „dxe " exp[iZ(Y, B); xJ, (4)

where M» is the elastic-scattering amplitude. It is instructive to examine M» in the angular-momen-
tum plane'.

f dYe '"M„(Y,B) =2im'((L —1) '- G(L)[-2f(B)]"'"+C(L,B)j,
where

C(L) = &62/»'"[(L —~.)"'-(1—~ )"'Dl»(L —~ )] "' L(L) =(2/~)"'[(1 —~ )"'-(L —~ )"']

and C(L, B) is an entire function of L for all values
of B provided n & 1+—,'A.. For n & I + —,'A. , the only
singularities on the physical sheet of the l plane
are the branch point at u, and a singularity at l
=I of the form

~„(L,B) — = 2im'(L —1) '[2f(B)]" '~.

The poles exhibited in Eq. (5) have moved onto an
unphysical sheet. The position of the new dynami-
cal branch point is u, = o.'—(1 —o.'——,'A. )'/2X for any
value of Q.

Figure 2 illustrates the /-plane structure Lor
the case e j. +-,'A.. The A-Reggeon exchange am-
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( —PLANE the Fourier transform with respect to 8 gives

~„(t,~) = 2im'R, '[(t —1)'+R 'X'] "' (7)
g(N I I)

C \ j' %/jj5 jI %4

yJ %/
I

jj4

FIG. 2. Analyticity in the l plane. Dashed poles are
on the unphysical sheet.

plitude has a, pole at n(N) = 1+N(u —1) + ,'AN(N——1).
The pole at l = n(1) = n is due to the exchange of a
single fixed input pole. The pole at n(2) = 2n —1

+~ arises from the ladder graphs, and the poles
with N ~ 3 from the checkerboard graphs with 8
vertical lines. In general, (0 ~Z IO) =f"(8)exp+
x[n(N) —1]f, so that the series expansion of S
given in Eq. (2) diverges. The poles with N & 2

are dynamical in origin, and the quadratic depen-
dence of u(N) is due to the fact that the number of
attractive pairwise interactions increases as

(1V —1). The square-root branch point at I = u,
is directly related to the above divergence of the
perturbation expansion. Notice that n, I for all
values of A, and n. The only poles on the physical
sheet are those for which N -1V =(1 —n+ —,'A)/A. .
Let us imagine that the coupling constant is in-
creased from zero to infinity at a fixed value of
n -1. For small values of A, the branch point is
far to the left in the / plane. As A. is increased
the dynamical poles move to the right, but the
branch point moves even faster. Each pole even-
tually collides with the branch point and then
moves off onto the unphysical sheet. At A= 2(1
—n) the branch point circles the fixed pole and

starts to retreat back to the left. Therefore, for
A & 2(1 —u) the branch point is the only singularity
on the physical sheet.

The behavior of the cross section as the param-
eters are varied is now easy to follow. The total
cross section is dominated by the dynamical pole
arising from the ladder graphs as long as this
singularity is on the physical sheet. We thus have

or(s) -(s/m')'" " for A. - -', (1 —n). On the other
hand, for A. &-', (1 —n) the branch point dominates
and we then find o,.(s) -(s/m')"' '[In(s/m')] "'.
Thus, for n & I+ 2A. the total cross section always
goes to zero at high energies, This includes the
case n = I, which is given above with n, = zA..

For o. & I+ —,'A. the scattering amplitude has a
branch point at l = n, and an additional singularity
at l =1. To illuminate the form of this singularity
we make the particular choice f(B) =e '". Then

where R, =R(1- n+ —,'A), and we have neglected
contributions from the branch point at l = o, The
two-dimensional momentum transver is 6, and
at high energies, t= —4 . The amplitude in Eq.
(7) is just the l-plane singularity associated with
scattering from a black disk of radius Rp&
gives rise to a total cross section of the form
or(s) =2&RO'[Ins/m']'. If one increases u for fixed
A., the branch points at l =laiR, d-t enter the
physical sheet through the unitarity cut when n
=1+~X. At this point a,=1 and R, =O. Notice that
for sufficiently large values of A. the total cross
section always goes to zero at high energies for
fixed o..

The unitarity cut, which we have exhibited ex-
plicitly in this solvable but quite general model,
will be present in a wide class of multiperipheral-
like models. In particular, it has been possible
to show that the cut exists in a model where 8'„
coincides with the standard multi-Regge ampli-
tude in the region of phase space in which all sub-
energies are large. ' This model cannot be solved
analytically; however, it is possible to write
down an integral equation for the amplitude Z„
—= (0 IZ" [0), which gives the contribution to the
elastic scattering amplitude arising from N-Reg-
geon exchange. The integral equation for Z~ has
the same structure as the Lippman-Schwinger
equation in two dimensions. ' The angular-mo-
mentum variable plays a role analogous to the en-
ergy variable in the nonrelativistic scattering
problem. As a result, determining the position
of the leading Regge pole that contributes to Z„
is equivalent to solving for the ground state of a
two-dimensional N-body system. Since there are
—,'N(N —1) attractive two-Heggeon interactions,
one expects the leading Regge pole in Z„ to move
to the right in the E plane like N'. In fact, it is
possible to prove that this is the case for a wide
range of parametrizations of the input Regge pole. '
Since the S matrix is explicitly unitary, the elas-
tic scattering amplitude cannot have l-plane sing-
ularities on the physical sheet to the right of l = I.
As a result, it must have a branch cut which is
of a different type than those discussed by Mandel-
stam, and the troublesome poles must be on an
unphysical sheet of this cut. ' This can be shown

explicitly in the present model. ' It is difficult to
see how these features could be changed in more
sophisticated models that take into account low

subenergy effects.

524
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In our solvable model, we find that if the input
trajectory is 1 or less, the multi-Regge region
of phase space provides a contribution to the total
cross section that decreases as a power of the
energy. Hence, the experimentally observed con-
stant total cross sections must arise from other
sources, such as the fragmentation region or the
low subenergy pionization region.

*Work supported in part by the U. S. Atomic Energy
Commission and the National Science Foundation.

A more detailed exposition of these models is given
elsewhere. S. Auerbach, B. Aviv, R. Blankenbecler,
and R, Sugar, Stanford Linear Accelerator Center Re-
port No. SLAC-PUB-1047 (unpublished).

J. Finkelstein and K. Kajante, Phys. Lett. 26B, 305
(1968).

Recently several different approaches have been sug-
gested for enforcing the Froissart bound when the
ladder graphs have a singularity to the right of l =1
fH. Cheng and T, T. Wu, Phys. Rev. Lett. 24, 1456
(1970); S. J. Chang and T. M, Yan, Phys. Rev. Lett. 25,
1586 (1970); J. Finkelstein and F. Zachariasen, Phys.
Lett. 34B, 631 (1971); J. B. Fulco and B. L. Sugar,
Phys. Rev. D 5, 1919 (1971)1. However, in these mod-

els the Froissart bound is saturated from the multi-
Begge region of phase space. This result is unsatisfac-
tory experimentally since particles produced at high en-
ergies tend to have rather low relative energies.

See Cheng and Wu, Chang and Yan, Finkelstein and
Zachariasen, and Fulco and Sugar, Bef. 3.

5Models of this type have been discussed recently by
B. Aviv, B. Blankenbecler, and B. Sugar, Phys. Rev.
D 5, 8252 (1972); and by G. Calucci, R. Jengo, and
C. Reggi, Nuovo Cimento 4A, 880 (1971), and 6A, 601
{1971),and to be published.

6In order for the eikonal approximation to be valid
one should introduce 0 functions to the &„which re-
strict the pion rapidities to the range ly; I- 2(1 —~)y
(see Befs. 1 and 4). Since in most cases ~ can be set
equal to zero at the end of the calculation, we shall not
write it explicitly.

A. Erdelyi et a/. , Tables of Integral Transforms
(McGraw-Hill, New York, 1954), Vol. 1, p. 146.

The Reggeon calculus used here is in the spirit of
that discussed by V. N. Gribov, Zh. Kksp. Teor. Fiz.
58, 654 {1967) I.Sov. Phys. JETP 28, 414 (1968)]; and
H. D. I. Abarbanel, National Acceleratory Laboratory
Report No. THY-28, 1972 (to be published).

9The amplitudes Z& contain the Mandelstam cuts. In
fact the Begge poles enter the physical sheet of the Z~
through these cuts.
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Relations between structure functions conventionally obtained from quark-parton or
light-cone models are shown to follow from model-independent symmetry assumptions
common in hadron scattering. Exotict-channel exchanges are forbidden. No strong-in-
teraction symmetry beyond isospin is assumed, and SU(8) is used only for vertices in-
volving currents. Relations originally derived for nucleon targets hold for any isospin
mirror pair and apply to complex targets appearing in the Mueller formalism for in-
clusive processes in the target fragmentation region. New relations are derived.

Numerous relations between the electromag-
netic and weak structure functions have been ob-
tained' by use of either the quark-parton model
or the light-cone algebra. We wish to point out
that many of the relations can be obtained from
general symmetry conditions and are present in
a wide class of models, ' and the same general
conditions can be applied to inclusive reactions
and lead to new sets of relations. Consider, for

instance, the relations'

4m g z&/p &II & —,
'

ps ~ yH~ 5(~ Us ~ vB)
1 1 &8 1 1

(la)

(lb)

where H and H are isospin mirror states. These
relations deal with the dependence of the scaling
function E, (u& = 2Mv/Q2) on internal symmetry
variables alone at fixed values of the energy-


