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The Quctuation-dissipation formula for the viscosity in terms of the stress-tensor Quc-
tuations reproduces the experimental logarithmic temperature dependence of the hydrody-
namic viscosity. Using the theoretical wave-number- and frequency-dependent viscosity
in the problem of critical diffusion, we find that the effects of nonlocality and retardation
practically cancel, resulting in satisfactory agreement with a recent light-scattering de-
termination of the effective viscosity.

Kawasaki' has shown that the critical variation
of the diffusion coefficient in a binary liquid near
its critical point can be represented by the Ein-
stein relation D = Tp &, where T is the tempera-
ture (we use natural units such that Boltzmann's
constant is unity), $ is the correlation length for
the concentration fluctuations, and p & =(67rq)) '
is Stokes's formula for the mobility of a sphere
of radius $ moving through a liquid of viscosity

This result has also been established by one
of the present authors' by a different method, and
gives the rate of relaxation of a concentration
fluctuation of wave number q as

F, =Dq' = Tq'/6nri g,

provided $«q '; i.e., the wavelength should be
much greater than the correlation length. But,
as the critical point is approached, T- T, and $

The above inequality is then no longer satis-
fied and D becomes a function of q, corresponding
to "nonlocal" diffusion. This change is carried
out in Eq. (1) by substitution of an effective value
for $

' according to

(h '),fr=a, ttq,

where a, ff is some numerical constant of order
of magnitude unity. Equation (2) expresses in a
quantitative form the qualitative rule of dynami-
cal scaling' that all temperature dependence is
to be expressed in terms of 8, and that as T- T,
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all factors of g become replaced by the wave-
length. Actual computation yields a, q& =3m/8, so
that in the limit T- T, we obtain

(3)
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In Eq. (3) we have allowed for the fact that recent
experiments" have clearly established a critical
temperature dependence in the hydrodynamic vis-
cosity g. It, therefore, as well as the explicit
factor $ ', has to assume a q-dependent effective
value, which we denote by g, qf(q). The purpose
of the present note is to compare our calculation
of this function with some measurements of I','
recently carried out in this laboratory. ' As the
theory is rather involved, we prefer to present
our results in a semiphenomenological fashion,
touching only the main points of the calculation
at the end. Proceeding in this spirit we first
take note of the separation' of the hydrodynami-
cal viscosity into an "ideal, " noncritical back-
ground q,.„and a residual critical portion Aq. An

accurate empirical fit' to the ratio of the critical
portion to the total as a function of $ ' for the
binary liquid 3-methylpentane-nitroethane is

(4)

where A =0.051. The correlation length is known
from light-scattering intensity measurements' to
have the temperature dependence $/$, = [(T—T,)/
T, ] "with $, =2.56 A and v=0. 616. Substituting
from Eq. (2) and denoting the numerical factor by
a f f

"' ", we obtain at the critical point

(5)

The fact that the functional dependence is loga-
rithmic permits us to consider the ease that the
logarithm is very large. The constant term can
then be nelgected. To this "logarithmic accura-
cy,

"we expect the fractional critical viscosity
which is effective in the diffusion process to be
precisely the same function of q that the hydrody-
namic viscosity is of ( '. This function is plotted
as the solid line in Fig. 1. The values of g, f f(q)
determined experimentally from linewidths are
shown as circles. The parallel dashed line illus-
trates better-than-logarithmic accuracy for
a f f

' = 2 ', which would follow from an incom-
plete theoretical treatment, as explained below.
This line serves to indicate the sensitivity of the
logarithmic approximation to a,ff"". It is evi-
dent in Fig. 1 that for the theory to agree with
the data the computed value of a,«""should not
be significantly smaller than 1. The remainder
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FIG. 1. Fractional critical viscosity versus wave

number. Solid line, the experimental logarithmic de-
pendence of the hydrodynamic viscosity upon the in-,

verse correlation length (Refs. 5 and 6); dashed line,
static nonlocal correction for the theoretically comput. -
ed value of a~~=0.496. This would be the result for a
crude theory which did not include retardation. In the
complete theory the correction for retardation cancels
the effect of static nonlocality and brings the theory
back down to the solid line. Thus the solid line repre-
sents both the hydrodynamic viscosity and the theoreti-
cally expected effective viscosity. This line is in satis-
factory agreement with the circles, which show the
light-scattering linewidths measured by Chang, Keyes,
Sengers, and Alley (Ref. 7).

of this note is devoted to establishing that this is,
indeed, the outcome. In fact, we find from a
complete theoretical treatment (i.e., one taking
into account both the wave-number and the fre-
quency dependence of the viscosity) a,fP'" =0.92.
This is so close to 1 that there is no need to draw
an additional line. We can regard the hydrody-
namic function (a =1.00) as a sufficiently accurate
representation of the theoretical effective viscos-
ity, and we see from Fig. 1 that it is consistent
with the experimental finding a,qf"'"(exp) =2+ 1.

In order to achieve better-than-logarithmic ac-
curacy, we need a theory of critical viscosity
for calculating a,ff"". Such a theory has been
proposed by Kawasaki' and by Deutch and Zwan-
zig." We have followed the latter approach which
is based on the fluctuation-dissipation theorem" '2

connecting the viscosity with fluctuations in the
off-diagonal components of the stress tensor. In
this way we have obtained an expression" of pre-
cisely the form of Eq. (4) with a theoretical value
for the coefficient' A equal to 8/15m' =0.054, in
close agreement with the experimental value
0.051. (The Debye cutoff qn is a free parameter
in the theory and is to be fixed by taking it equal
to the experimental value. ) The fluctuation-dissi-
pation theorem expresses the wave-number- and
frequency-dependent viscosity as a four-dimen-
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sional space-time Fourier integral over the correlation function fluctuations in the off-diagonal compo-
nent T„,of the stress tensor (x and y are particular Cartesian coordinates). It is more convenient,
however, to treat the time dependence by the Laplace transform, in which we write the "frequency" as
I", times the dimensionless variable y'. Thus, the generalized viscosity is

n(q, r) =(1/2T) fd'&„exp(& I{x„—I','r'I f„I)(T„,(2)T„,(1)&, (6)

where the integration is over all of space-time, q is in the y direction, and the angular brackets denote
the thermal equilibrium average. We are interested in the critical fluctuations in T„„which are given
by the canonical expression"

T„,= s„BE/Bs, = Z 's„s„ (7)

where the Landau-Ginzburg free-energy density depends quadratically on the partial derivations of the
concentration s„,through the gradient term (Vs) /2Z. Inserting Eq. (7) into Eq. (6) and factoring the
ensemble average in terms of the concentration correlation function

G(21) = (s(2)s(].)) = (27{) 'fd'q exp(i{I x„—I;I f„l)g (q) (6)

enables us to carry out the integration in terms of the Fourier transform

g(q) =ZT/q'.

Substituting E{l. (7) into Eq. (6) and factoring the fluctuating concentration variables into pairs we find
for the critical viscosity, after a certain amount of manipulation,

(Z'T) ' g(q, )g(q, )(q,' —q, ')'

Tq dZl~dD2 (My —Q2 )

q
8' 12 1+ 3

(10)

where S means q, +q, -q, Iq, —q, I-q, q, , -q„and S' means M, +u, -1, lu, —u, 1 &1, u, , -q, /q. The
cutoff q', is proportional to the Debye cutoff g D. The static case p =D can be integrated analytically and
yields

aq{q, 0{ 8 q, {3 -4m 8 { q. 0 0&2)
q, {.g(q) 15m' q 15 9&3 15&' q

Equation (10) has been written for the special
case E '=0. Finite values of $ require correction
factors [I+{q() '] ' and [I+(q$) ']'" ing(q) and
l"„respectively. " Comparison of the result for
the q =0, g

' &0 hydrodynamic case with the q & 0,
t ' =0 nonlocal case gives, in the language of
Eq. (2),

= 2 exp(4~/0~3- '-.') =o.496. (12)

If we were to assume that thefrequency depen-
dence of the viscosity could be neglected in the
critical diffusion process, we would have the ap-
proximation 0 gg g ~g(, This approximation
is depicted by the dashed line in Fig. l. It is in-
teresting to note that E{I. (12) confirms the gener-
al rule of thumb" that when the factorization
brings in the correlation length twice (via the
e{lual-time Green's function), a, q{= 2.

But Eq. (12) cannot directly be applied to the
diffusion problem because it is applicable only

in the static li.mit. The approximation a,«""
=a, ~~

" is too crude, as the diffusion process
depends upon the relaxation of current fluctua-
tions, which are the product of concentration and
velocity fluctuations. Because of the finite con-
centration relaxation rate, we are forced to study
viscous damping of the velocity field at nonzero
frequencies. This results in a kind of "retarda-
tion" correction to the critical viscosity which
leads to a decrease in the effective viscosity.
Our final task is the computation of this decrease,
which entails the use of E{l. (10) at all fre{luen-
cies y3. We define a dynamical scaling function
o(~) by

n(q, ~) —n(q, o)
q, «(q) 15~'

For 0&y«1, v(y) =-0.316y', while for y»1 we
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have the high-frequency approximation

—,'m „, , 13 ~m
&(r) =» — .' ~ (2'"r) '-—+

y sin3m 15 3 sin3p

=0.169- lny - 0.479y '. (14)
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%e have confirmed by numerical computation
that the above low- and high-frequency approxi-
mations are, in fact, very accurate for y&0.5

and y& 1.5, respectively. Interpolation through
the region y=1 yields a smooth negative-definite
monotonic curve. Therefore, the effect of retar-
dation is necessarily to decrease the logarithmic
divergence by a weighted mean, o'„,& 0." To
determine o „,we expanded the reciprocal of the
viscosity, which appears in the time-dependent
velocity correlation function, in powers of the
critical portion ~g, and worked to first order in

The resulting two-dimensional integral over
the wave numbers of the concentration and veloc-
ity fluctuations can be reduced analytically to
quadrature in terms of their ratio y. Using the
values of o(r) obtained as described above, and
carrying out this integration numerically, we
have found 0'„,=-0.62, corresponding to a, f

f""
a pf f "exp(- c,„,) =0.92. As mentioned above,

this is in satisfactory agreement with the experi-
mental value a, f"t"(e x)p= 2+ 1. The fact that
this coefficient comes out so close to 1 is a con-
sequence of two competing physical effects,
namely the nonlocality and the retardation.

A further outcome of theory, which we mention
only in passing, is that the retardation produces
some non-Lorentzian distortion" in the diffusion
line shapes which may, however, be too weak an
effect to detect experimentally. Finally, it is a
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discussions with R. F. Chang, P. H. Keyes, J. V.
Sengers, and C. 0. Alley.
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