VoLUME 29, NUMBER 8

PHYSICAL REVIEW LETTERS

21 AucusTt 1972

0.02
Coinc,/Singles
FIG. 1. A,, as reported by Pattenden and Postma

(Ref. 1), versus relative yield of high-energy frag-
ments, as revealed by the coincidence-to-singles ratio.
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five values or three degrees of freedom in a bi-
variate distribution, this corresponds to a signifi-
cance level (probability that a random bivariate
sample would give this result) of much less than
1%. It can be concluded that fission-channel
properties are correlated with fragment Kkinetic
energies and thus, presumably, also with ¥, The
effects observed in the present experiment on
235J can be compared with similar work (of con-
siderably higher quality) reported by Felvinci
and Melkonian® for ?3®U, The importance of indi-
rect methods such as this for determining fission-
channel properties for 2**Pu, which does not per-
mit direct determination by nuclear alignment
studies, should also be pointed out.

The authors would like to take this opportunity

to thank E. H, Kobisk, Oak Ridge National Labor-
atory, who developed the technique for rolling
the extremely thin fission foil used. The hospi-
tality of the Rensselaer Polytechnic Institute is
also gratefully acknowledged.

*Work performed under the auspices of the U. S.
Atomic Energy Commission.

IN. J. Pattenden and H. Postma, Nucl. Phys. A167,
225 (1971).

’N. J. Pattenden, private communication (1971).

3M. S. Moore, in Statistical Properties of Nuclei,
edited by J. B. Garg (Plenum, New York, 1972), p. 55.

‘G. A. Cowan, B. P. Bayhurst, R. J. Prestwood, J. S.
Gilmore, and G. W. Knobeloch, Phys. Rev. C 2, 615
(1970) .

SM. S. Moore and L. G. Miller, in Proceedings of the
Symposium on the Physics and Chewmistry of Fission,
Salzburg, 1965 (International Atomic Energy Agency,
Vienna, Austria, 1965), Vol. I, p. 87.

SE. Melkonian and G. K. Mehta, in Proceedings of the
Symposium on the Physics and Chemistry of Fission,
Salzburg, 1965 (International Atomic Energy Agency,
Vienna, Austria, 1965), Vol. II, p. 355.

'S, Weinstein, R. Reed, and R. C. Block, in Proceed-
ings of the Second Intevnational Atomic Enevgy Sym-
postum on the Physics and Chemistvy of Fisston,
Vienna, Austria, 1969 (International Atomic Energy
Agency, Vienna, Austria, 1969), p. 477,

Syu. V. Ryabov, So Don Sik, N. Chikov, and N. Ya-
neva, Joint Institute for Nuclear Research Report No.
P3-5297, 1970 (to be published).

%J. P. Felvinci and E. Melkonian, in Proceedings of
the Thivd Conference on Neutvon Cross Sections and
Technology, Knoxville, Tennessee, 1971, edited by
R. L. Macklin, CONF-710301 (U. S. AEC Division of
Technical Information Extension, Oak Ridge, Tenn.,
1971), p. 855.
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The spectroscopic factors for d—np and ‘He—n3He are studied using dispersion rela-
tions. It is found that the large distortions represented by the cuts, which have previous-
ly prevented dispersion relations from being a practical tool for nuclear physics, can be
handled using the conformal mapping techniques of Cutkosky. The method could have

general applicability for nuclear physics.

The most accurate determination of coupling
constants in particle physics has been achieved
via dispersion relations.' Soon after they were
developed for nucleon-nucleon scattering, for-
ward dispersion relations were derived for com-

posite systems; and application was made to neu-
tron-deuteron scattering® for the calculation of
spectroscopic factors,® the nuclear analog of cou-
pling constants. There have been a number of at-
tempts since then to use dispersion relations in
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nuclear structure physics,* but no successful sys-
tematic program has been possible up to now. It
is the purpose of the present work to examine the
source of past failures and to explore the possi-
bility of a practical program of fixed-energy as
well as fixed-angle dispersion relations for nu-
clear physics.

Recently, Ericson and Locher® have reviewed
the use of forward dispersion relations in nuclear
physics and have carried out calculations with
modern data. For neutron-deuteron scattering
the results are in satisfactory agreement with
known nuclear properties, as were the results of
Blankenbecler, Goldberger, and Halpern® using
earlier data. However, for n-*He scattering the
pole approximation is not satisfactory, and the
spectroscopic factor for (*“He,n®He) obtained from
the forward dispersion relations is quite uncer-
tain. The difficulty, of course, is the treatment
of the left-hand cut, which appears from these re-
sults to be far more important for the n-*He than
for the n-d. We shall try to understand this here.

Since one does not take advantage of the angular
distribution with forward dispersion relations, it
is likely that one can obtain more accurate re-
sults by using dispersion relations in a transfer
variable. However, the use of dispersion rela-
tions in the cosf variable, if carried out in the
pole approximation (as in the successful treat-
ment of the m-nucleon coupling constants®), can-
not be expected to give accurate results for the
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FIG. 1, Diagrams for closest singularities in nucleon-
deuteron scattering., Notation is discussed in the text.

pole residues (spectroscopic factors, as explained
below) because of the cuts. Here we explore the
use of conformal mapping techniques which have
been developed by Cutkosky and his collabora-
tors.” The mapping which we employ has been
shown’ to enable one to extract coupling constants
in the presence of important cut contributions.
Let us first consider nucleon-deuteron scatter-
ing. The singularities are illustrated in Fig. 1
for either neutron or proton projectiles. In the
figure, N represents a neutron or a proton, and
[3N] a ®H or *He, whichever is appropriate. The
Coulomb diagram [Fig. 1(c)] is present only for

the p-d case. The once-subtracted forward dis-
persion relation is
oR’) E _ (B Im(f(E’))
= —— = 1
P_w dEE,(‘,_E), (1)

where [ is the reduced mass, E = (82 + M ®)"? is I
the laboratory kinetic energy, o is the total cross
section, and the pole positions Ey and E[;y] are
found by setting u = (p; —py)?=My® and s =(py
+D4)? :M[sNJz, respectively. The residues gy and
gsn] are determined by the asymptotic part of the
wave functions. For example, for an S-state deu-
teron with an asymptotic part of the relative wave
function given by e ~**/x, gy=2TN2,

The last term in Eq. (1) is the contribution from
the left-hand cut, a term neglected in earlier
treatments. For nucleon-deuteron scattering the
branch point E, is determined by the m-triangle
diagram, Fig. 1(d). Because of the anomalous
threshold associated with the loosely bound deu-
teron, the cut does not start at — 70 MeV, which
one would naively expect from the u-channel ex-
change of an additional particle with mass 140
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MeV, but at an energy much closer to the physi-
cal region. The resulting singularity structure is
given in Fig. 2(a).

A simple model of diagram 1(d) is used to learn
more about the left-hand cut.® It turns out that
the contribution of this term to the dispersion re-
lation is not very large. Its influence in deter-
mining the spectroscopic factors has been inves-
tigated by finding the best fit to the data with and
without its inclusion. Taking various cuts in the
data,® it was found that the spectroscopic factors
vary by about 50%, depending upon the range of
energies used and that the contribution of the left-
hand cut caused a comparable uncertainty. Includ-
ing the left-hand cut does not stabilize the results
as one includes data of increasingly high energy;
however, the model for the cut is rather crude
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FIG. 2. (a) Singularities for N-d scattering in the E
plane for forward scattering; (b) singularities for N-d
scattering in the cosf plane for fixed E.

and cannot be expected to be reliable far from the
threshold.

The angular dispersion relations have been
used in a study of the same data. The singular-
ity structure in the cosé plane is given in Fig.
2(b). The value of the pole position due to nucle-
on transfer, cosf,, is determined by settingu
=M ,* at each energy. The left-hand branch part
is determined from diagram 1(d), and corres-
ponds to the value of the # variable at the left-
hand branch point in Fig. 2(a). The right-hand
branch point is given by ¢ = (py —py+)?=0.034
(GeV/c)®. It corresponds to the deuteron form
factor [Fig. 1(d)]. This is also the closest ap-
proach of the branch point of the box diagram, as
one knows from the fact that the form factor is
the reduced box diagram.'®

Expanding about the nucleon transfer pole for
the neutron-deuteron case, one has

[4k4(COSQ - COSep)zdo'/dQ.]cose= cos6p
:(MdgN/le)z 1) (2)

where M, is the deuteron mass and gy has been

TABLE 1. Results for N-d elastic scattering using
the dispersion relation in cos0,

defined earlier.

Estimates of g, have been made using the n-d
data at 5.64, 7.01, 9.04, and 14.3 MeV.® This
was done by introducing a search of the form®

(do/d2)(4k*)(cos b ~ cosb,)?

Np

Z} ()(cosb — cosb,)’ (3)

for the parameters A(i). A(1) is proportional to
the spectroscopic factor squared, as seen from
Eq. (2).

At each energy a search using the CERN pro-
gram MINWEE was made with various numbers of
parameters, N,. It is found that the results are
quite sensitive to the value of N,. Generally, the
optimal 90, is one or two larger than the number
of partial waves needed to fit the data. The re-
sults are summarized in Table I. The results
correspond to a value for gy=~0.12, which is rough-
ly 25% larger than the value 0.094 which corre-
sponds to the value of N obtained from the effec-
tive range.

We wish to use this as a test case to study the
expansion in a mapped variable to take care of
distortions associated with the cuts. Note that
some of the distortion normally explicitly intro-
duced in distorted-wave Born-approximation cal-
culations is included in the treatment of the data
in the physical region. We map the entire cut on-
to an ellipse. This is expected to modify the re-
sults as if one had approximately included the
cuts in the calculation.” A search in the form

(@3)(%2)& @) -2,

where z (9) is the mapped variable, was made for
the B(i).

The nature of the search is the same as the one
described above, and the results are given in Ta-
ble II. Overall, the value of g4=0.1 is found.
This result is an improvement of some 20% over
the results with the cosf variable. However,
since the distortion is small, and there is rough-

Z)B @)z (0)-2z,1", (4)

TABLE II, Results for N-d elastic scattering using
dispersion relations in the mapped variable,

Energy Optimum 97, X’ A(1) Energy  Optimum®, x? B(1)
5,64 3 0.86 0.13 5.64 3 0.85 0,097
7.01 3,4 0.59,0.47 0.11,0.,17 7.01 4 0,47 0.097
9.04 4 0.48 0.10 9,04 4,5 0.5,0.6 0.083,0.093

14.3 5 1.1 0.2 14.3 5 1.46 0,12
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ly a 15% uncertainty in the calculation, it is not
possible to state that this is a significant improve-
ment in this case. Since the normalization N en-
ters to the fourth power, a careful treatment
might select between various potentials. With
potentials now in use, there are differences of up
to 50% in the value of 9M* between wave functions
with similar values of the D-state probability.

The use of Cutkosky’s convergence test function’
would probably allow more definitive conclusions.

Let us now turn to the case of n-*He scattering,
where the forward dispersion relation failed. As
one can see from Fig. 3, there is one pole in cos#,
coming from 3He exchange. The left-hand branch
point corresponds to p +d exchange (although the
7 triangle is considerably closer to the physical
region than the value given by Ericson and Loch-
er®). The right-hand branch point arises from
the reduced box diagram, the form factor. Pa-
rameter searches of the form (3) and (4) are car-
ried out. In this case, however, the results in
the mapped variable differed considerably from
those using the cosf expansion. Data at 10 and
15.05 MeV are used.! With no mapping it is found
that 9, =6 is optimum, and that of the various so-
lutions the value of A(1)=125-150 is most nearly
consistent with the data at the two energies. This
value is very nearly the one obtained using the re-
sult of the one-pole fit for the forward-dispersion-
relation calculation of Ref. 5. The results with
the conformal mapping are best for ¢, either 5
or 6. The values of B(1)~400-550 are most satis-
factory.

Even with the use of limited data, we have been
able to arrive at by far the best determination of
this spectroscopic factor which has been achieved,
perhaps to within 25% accuracy. Considering the
great difficulty in determining this number from
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FIG. 3. (a), (b), (c) Diagrams for nearest singulari-
ties for n-‘He scattering; (d) singularities in the cost
plane at fixed E for n-'He scattering.
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n-3He scattering, due to nearby resonances,?
this is an excellent example of the power of the
method to provide an accurate as well as math-
ematically sound technique for handling distor-
tions.

Thus, first of all one can understand the results
of the forward dispersion relation calculations.®
In the N-d case, it is not that the left-hand cut is
far away, for the left-hand cut in the N-d case is
actually closer than for the N-*He. It is simply
that in the N-d case there is a small discontinuity
across the left-hand cut, and so the pole approxi-
mation can give reasonable results. However, in
the N-*He case the left~hand cut contribution is
very large. The exciting and most promising re-
sult is that the technique of optimizing the expan-
sion by using a mapped variable seems to be able
to handle this large distortion. Details will be
given in a forthcoming publication.

The author would like to thank Professor R.
Cutkosky for many helpful discussions. He would
like to acknowledge helpful discussions and as-
sistance in the calculation with a number of other
colleagues at Carnegie-Mellon and the assistance
of several members of the Los Alamos staff in
carrying out the numerical computations, espe-
cially Dr. Frank Shively.

*Work supported in part by the National Science Foun-
dation.

'3, Hamilton and W. S. Woolcock, Rev. Mod. Phys. 35,
737 (1963). Contains references to earlier work.

’R, Blankenbecler, M. Goldberger, and F. Halpern,
Nucl. Phys. 12, 629 (1959).

*We define the spectroscopic factor for a composite
system as the asymptotic amplitude for breaking into
the component parts under consideration, This is not
the usual definition.

41, S. Shapiro, in Interaction of High-Energy Particles
with Nuclei, Proceedings of the International School of
Physics “Envico Fevrmi,” Course 38, 1966, edited by
T. E. O, Ericson (Academic, New York, 1967). Con-
tains references to early work.

5T, Ericson and M. Locher, Phys. Lett, 27B, 576
(1968), and Nucl. Phys. A148, 1 (1970); M. Locher,
Nucl, Phys, B23, 116 (1970).

P, Cziffra and M. J. Moravesik, Phys. Rev. 116,

226 (1959). An extension for nuclei using pole dia~
grams with a phase-shift analysis has been carried out
by P. E. Shanley |Phys. Rev. Lett. 24, 18 (1970)] and
by M. Bolsterli and G. Hale [Phys. Rev. Lett. 28, 1285
(1972)].

'R. E. Cutkosky and B. B, Deo, Phys. Rev. Lett. 20,
1272 (1968), and Phys. Rev. 174, 1859 (1968); R. E.
Cutkosky, Ann. Phys. (New York) 54, 350 (1969); Y. A.
Chao, Phys. Rev. Lett. 25, 309 (1970).

8L, S. Kisslinger, in Proceedings of the Fourth Inter-




VoLUME 29, NUMBER 8

PHYSICAL REVIEW LETTERS

21 Augusrt 1972

national Conference on High Energy Physics and Nucle-
ar Structure, Dubna, U.S.S.R., 1971 (to be published).
Contains numerical estimate of the left-hand cut contri-
bution.

9References in J. D. Seagrave, Los Alamos Report
No. LA-DC-10638 (to be published).

R, Eden, P. Landshoff, D. Olive, and J. Polking-
Horne, The Analytic S-Matrix (Cambridge Univ, Press,
Cambridge, England, 1966).

1B, Hoop and H. Barschall, Nucl, Phys. 83, 65 (1966).

2p, Szydlik and C. Werntz, Phys. Rev. 138B, 866
(1965).

Asymptotic Limit for the Speed of Sound in a System
of Relativistically Interacting Particles*

Richard L. Bowers

Center for Relativity Theory, The University of Texas at Austin, Austin, Texas 78712
(Received 25 May 1972)

A relativistic many-body theory is used to evaluate the equation of state to lowest or-
der in the weak coupling constant for a dense system of electrons and neutrinos interact-
ing through the universal Fermi interaction, The asymptotic limit for the speed of sound
S ¢/V3 is obtained; it is conjectured that a large class of relativistic interactions

leads to the same limit,

One of the most important problems in relativ-
istic astrophysics and general relativity is the
problem of stability against gravitational collapse
for stars in the final stages of evolution.! As
long as attention is restricted to white dwarfs, a
knowledge of nonrelativistic many-body theory
and nuclear physics is sufficient.! However,
when one considers the fate of a star whose mass
exceeds the Chandrasekhar mass limit, and asks
whether its final state is a neutron star, or in-
evitable collapse to a black hole, the problem
becomes one of relativistic many-body theory
and the behavior of matter at asymptotic den-
sities, In the absence of empirical data about
matter above nuclear densities, we must rely
upon theoretical arguments. One of the simplest,
and apparently least dependent upon detailed
dynamics, is the conjecture that all realistic
relativistic equations of state should lead to a
speed of sound v <c/v3.! This conjecture met
with difficulties, and a less stringent limit v, <c
has been suggested.? However, none of the argu-
ments leading to either of the above limits is
based upon a fully relativistic many-body theory
which includes interaction between particles.

We have shown that the limit v,<c¢/V3 is a con-
sequence of at least two relativistic interactions.
Our results are based upon a fully relativistic
many-body theory.® We present at this time the
results for a system of neutrinos coupled to a
dense degenerate Fermi sea of electrons, with
interactions included to lowest order in the weak
coupling constant G. The universal Fermi inter-

action is assumed, and the system is taken to be
at zero temperature.

In addition to yielding an asymptotic limit for
ve, the system described above is of importance
in neutrino astrophysics,*® and in the case of
finite temperatures for some cosmological mod-
els.® Finally, the relative mathematical sim-
plicity of the model leads to results which (to
lowest order) may be expressed in simple analy-
tic form.

Let us restrict our attention to the lowest-
order contribution to the interaction e+v—-e+v
due to the interaction Hamiltonian’

o= 580" (A =700,0,7, (L =y, +Hee. (1)

The system is assumed to contain neutrinos with
number density z,(g) at temperature g=1/T.

The density and temperature effects are included
through boundary conditions® imposed on the
neutrino two-point function. The self-energy,
corresponding to the Feynman diagram of Fig. 1,
is easily shown to be®

2k, B)=(G/N2°(1 =yg)n,, (&, B), (2)

with » (%, g) the Fermi-Dirac distribution func-
tion for neutrinos. At zero temperature, n,(k, g)
~k:®/67°. Next consider the effect of the interac-
tion (1) on a system containing (in addition to
neutrinos) electrons of number density n,=p %/
37 at zero temperature, As a result of the de-
generate Fermi sea of neutrinos, the electron
pressure will depart from that of an ideal Fermi

509



