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We calculate the critical index v of the correlation length between two vertical arrows
in the same column for the eight-vertex model and find v =1-n j2. We also compute at
zero temperature the low-lying excitations of the &-&-& model,

Recently, Baxter" computed the free energy of
the zero-field eight-vertex model and the ground. -
state energy of the X-F-Z model. This was ac-
complished by calculating, in the thermodynamic
limit, the two eigenvalues largest in magnitude
of the transfer matrix for a row of vertices of the
eight-vertex model. He determined the critical
index n of the eight-vertex specific heat and found

the surprising result that it depended continuously
on an interaction parameter. It is of interest to
compute the other critical indices of the eight-
vertex model and to compare them with the pre-
dictions of scaling theories of phase transitions. ~

In this note we study G&, the correlation function
for two vertical arrows in the same column. We
also study the low-lying excited states of the I-Y-
Z model, which are closely related.

We follow Baxter's notation and denote the pair-
wise equal weights of the eight-vertex model by

a, b, c, and d, a.nd define go, = —,(c +d), w, = —,(c —d),
w, =s(a —b), and w, =-,'(a+b). In terms of these w;

!
the partition function Z satisfies the symmetry

relations'

Z (w „go„zv„w~) =Z (+ go, , + w, , + go~, + zo, ),

where i,j,k, l are any permutation of 1, 2, 3, 4. It
is therefore sufficient to restrict attention to the
fundamental region (FR) w, &w, &w, &w, &0. The
cases of physical interest are

I, K~ )204)

u, &!w, ! &w, &!zv, ! (T &T,),

go, &u, )!zv,! &!zo,! (T &T,),

zo, &w, &!w,! &!w, ! (T &T,);

II. zv, )se„
u, &!u,! )u, )!zv,! (T &T,),

u, )zo, &!zv, ! &!zv, ! (2' &2',),

go &w, )!go,! &!gv, ! (T &T,).

(2a)

(2b)

(2c)

(3b)

(3c)

Using (1) all the cases of physical interest can be
reduced to the FR.

The correlation function G& given by

Ga(w„w„zvz, w4) =Z 'Tr!v T (w» w2, ws, w4)cr'2' (zv„w„w„w4)J (4)

does not possess as much symmetry as Z. T(w„w„ws, w, ) is the transfer matrix of a row and N

(even) is the number of rows. In place of (1), we derive

Ggg(wg~ wz, ws w~) = Ggg(k w» 4 wz, +w3~ + w~) = Ggg(wz, wg~ ws, w4) = (—1) Ggg(w4~ ws) wz, wg).

Furthermore, usi'ng Baxter's expression for T, it may be seen by making a unitary transformation
that

Ggg(w„wz, ws, w4) = Z Tl [0 T (u1„w3, wz, w~)o 2' (w„ws, w2, w4)J. (6)

Therefore, unlike Z, G„(w„zo„gv„zo,) cannot
be obtained for zv, in the physical regions from

G~ with so,- in the fundamental region. However,
if we have the required information about matrix
elements, then it is only necessary to compute
the eigenvalues of T in the FR.

Expressions (4) and (6) are the usual type of

relations used to study correlation functions in
terms of transfer matrices, ' and the standard

argument is that for large R

G„—(long-range order) —(A, /A )a,

where A, is the maximum eigenvalue of T, and
is the next lar gest eigenvalue. Here the mean-

ing of "-"is that there may be additional poly-
nomial behavior in R which comes from matrix
elements. We will restrict our attention to the
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exponential dependence on R, so only the eigen-
values of T are required. Below the critical
temperature, we use Eq. (4). The symmetry re-
lations (5) allow us to arrange the arguments of
T such that they lie in the FR. The matrix ele-
ment (g, 'Iv'Iy, ), between the eigenvectors j,,'
of the two eigenvalues + A, largest in magnitude,
is not zero. Hence, there is long-range order.
Above the critical temperature, we use Eq. (6).
The symmetry relations (5) allow us to place the
arguments of T in the FR. The matrix element
(|J,, 'Icr'Ig, ) vanishes (since v' changes the even-
ness or oddness of the number of arrows in a
row pointing down), so there is no long-range
order.

Baxter has shown that the eigenvalues of the
transfer matrix can be determined by solving a

set of coupled, nonlinear equations for the zeros
of a certain quasiperiodic function. For the two
eigenvalues + Ao, largest in magnitude, all the
zeros are real. In the thermodynamic limit,
these equations can be approximated by a linear
integral equation with difference kernel for the
density of these zeros. From previously solved
cases, ' it is reasonable to assume that for p,
& m/2 the next largest eigenvalues (in magnitude)

A, correspond to one of the zeros having imagin-
ary part iK, '/2, or to there being a complex-con-
jugate pair of zeros with imaginary part +Imp. '
In either cases, one can write a linear integral
equation for the change of the density of real
zeros from the density corresponding to the max-
imum eigenvalues. ' We solved the equation by
Fourier transform and determined the eigenval-
ues A, . The result for p&m/2 is

A
" sinhm (n, —X)[cosm n, + cosm n, jRein~= n, —

A. +
Ao ~ -g m coshmX

A n, + n, , " coshm(n, —A.)Isinmn, +sinmn~]Imln~= '- -' —z ~, + &u,) ~ m cosh'~

(8a)

(8b)

where 0& n, &X&~ (FR) and —m&o, ,- n&. Here,
0 or 2 represents an ambiguity in the choice

of a branch of the logarithm, and ro, =0 or 1 in-
dicates whether one is exciting from + 3,. For
given n, and n„ there are eight excited states,
corresponding to the possible values of cu, and
co, and to whether the excitation is a complex-
conjugate pair or a zero on iX„'/2.

Now Rein(AO/A, ) is given by (8a), with o., = n,
To calculate the critical index v, we per-

form a Poisson summation on (8a), with n, = o.,
= ~, and we find that Re ln(A, /A, ) —

I T —T, I"l'" for
T Tc'

Hence,

Since Baxter has found n= 2 —m/p. ,

(10)

which is the usual prediction of scaling. '
We have been careful in the above not to make

the identification $ '=Rein(A, /A, ), because it is
not valid for our calculation. This can be most
easily seen by considering the decoupling limit
p = m/2 and taking 8 even. Then by looking at the
underlying Ising lattice, equivalent to the eight-
vertex model, ' one can prove that the vertical-
arrow correlation function for a row, C(A)
= (Olo', 'o~'10), is equal to the vertical-arrow cor-
relation function G~ for a column. (Both are

! equal to the square of the Ising-model two-spin
correlation function along a diagonal. ) Now IO)
is an eigenvector of T and is independent' of e,.
Therefore, C(A) and hence its correlation length
are independent of n, . However, Rein(A, /A, ) is
obviously dependent on n„so $

'c Rein(A, /A, ).
The critical indices of $ and Re ln(A, /A, ) are
still believed to be equal and, in fact, they can
be shown to be equal in the case p = 7t/2 by com-
paring with known results. '

In the region p, & m/2, to proceed as outlined
above leads to difficulties with the choice of
branches. However, all plausible choices of
branches lead to an expression of the form

R ~A g g;cosm Q,A; „coshmX
Assuming that the C ' fall off sufficiently rapidly,
one finds v=m/2p, for p, &m/2. .

We conclude by using the above results to study
the low-lying excitations of the X-Y-Z model.
The Hamiltonian we consider is

with a periodic boundary condition and with J,
&J,& —

I J„L A useful parametrization" is J„/J,
= cn(2$, l) and J,/J, = dn(2&, l), where for the
above restriction on the J's the parameters (
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qg+ q2 ((dg+ (d2)n W, (11a)

AE= J,s—n(2$, l)K (K, ') '

&&[(1 —m'cos'q, )'~+(1 —n cos'q )'~') (11b)

where m is determined from A' '/K =A. /p. The
range of the q,. is 0 &q,. +z. For a given value of
q, and q„ there are eight states, and the statis-
tics of the excitations is believed to be of the
Fermi-Dirac type.

The authors wish to thank Rodney Baxter for
many helpful discussions and an illuminating set
of lectures.

and l are in the FR.
By taking a derivative' of the expression (8a)

for Rein(A, /A, ), we obtain (for p, ~ p/2) the ener-
gy difference LE between the first excited states
and ground state as a function of n, and n, . Bax-
ter' has shown that the transfer matrix T(o.,=k)
is equal to 2 times the cyclic shift operator that
moves all spins one site to the left. Therefore,
from Imln(A, /A, ), calculated at o„=X, one can
extract the momentum difference DP between the
excited states and the ground state in terms of
n, and n, . %e define two new variables q, and

q, by
n /7).

q, = 1' " *
dn(q, m) dq.

Then
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Quadrupole Moment of the Deuteron*
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The electric field gradient in the HD and D2 molecules has been calculated from 87-
term wave functions of the James and Coolidge type. With the use of experimental values
of the quadrupole interaction constant, the electric quadrupole moment of the deuteron
is found .to be 0.2875 F which is 270 larger than the most recent values. The estimated
error is 0.002 F .

The quadrupole moment of the deuteron, Q,
has long served as a touchstone for models of the
nucleon-nucleon interaction because of its con-
nection with the tensor force, without which Q
would vanish. At the present time Q cannot be
directly determined experimentally; it can be
extracted from the electric quadrupole interac-
tion constant eqQ jh with the aid of a theoretically

calculated field gradient q. However, quantitative
calculation of the field gradient' ' for such sim-
ple molecules has proved difficult. Code and
Ramsey' cast doubt on the most recent calcula-
tion' by showing that the results were not consis-
tent with their D, (J'= 1) and the earlier' HD(J= 1)
interaction constants. Signell and Parker have
noted the extent and aspects of the seriousness
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