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susceptibility and resistivity measurements on
Y A "I a A, "Zr:A, "and Pd:A" (where A stands
for any actinide), we may conclude that Th, U,
and Am are not magnetic while Np and Pu are
with magnetic moments of order 2p. B and 1p.z,
re spec tlvely.

For the case of actinide impurities in a ferro-
magnetic matrix, the only available data are hy-
peI fine-field measurements. The hyperfine field
has several contributions:

(i) The first contribution comes from the polar-
ization of the s -p conduction band,

P „,=A(Z)m, (').

A(Z) is a positive s-electron hyperfine coupling
parameter and w, , ' is the conduction-electron
polarization at the actinide impurity. A table of
the coefficients A(Z) is given by Campbell" for
all the elements except for the actinides. To
find A(Z) for the beginning of the actinide series,
we ean extrapolate the values for the first ele-
ments of the 7s series from the values for' the
corresponding elements of the 4s, 5s, and 6s
series. Hence we deduce A(Z) —(10-20)p, B

' Moe
for Ra. Assuming that A(Z) increases along the
actinide series with the same relative variation
A '(Z) dA(Z)/dZ as in the rare-earth series, we
can take

A(Z) = [15+0.6(Z —Z,)]& 10~@8 ' koe,

where Zo is the atomic number of BR. We take
here m. , ' = —0.2p. B as in transitional elements.
This assumes implicitely that the s band remains
unchanged by the impurity or that the screening
is entirely made within the d band. " Thus, h„p
is given by the curve I in Fig. 1:

(ii) The second contribution comes from the a-
like electrons,

h '"~= —n rn "&
CP d d

Q.d is constant in each d series and of order 50'-8 '
kQe for the 3d series, 400', B

' kQe for the 4d
series and 1000@& ' kQe for the 5d series, "and
md~ ~ is the d magnetic moment at the impurity
site. For the evaluation of md ", we apply here
the well-known results'6 of 3d impurities. For
3d impurities in Fe or Ni, m, „becomes negative
when the difference of charge 4Z between the im-
purity and iron is of order —1 and remains of
order —1p. z for 4Z = —2, —3, —4. '6 It should be
remembered that here one has a large period
effect which gives a larger impurity potential

than for pure charge effects; in any ease, the
variation of .md~' is almost unchanged, except
that it becomes more rapidly negative when hZ
decreases. Since the s-d hybridization is usually
important in transitionlike metals, which implies
small numbers of s electrons, we consider that
both s and d.

' electrons are screened within the
d band in the actinide case (the case of Ra is per-
haps a special one, like sp impurities, since only
s atomic states are present). In actinides, the
number of s electrons is 2 and the number of d
electrons remains smaller than 2. 5 or 3, so that
b. Z ~ —2 if we do not take into account the 5f
electrons in the screening. At this point, it is
important to distinguish, as far as f screening
is concerned, the case of magnetic f states and
nonmagnetic ones. In the first case, it seems
clear that, since the 5f states are far from the
Fermi level, their contribution to the screening
is negligible. The ease of nonmagnetic 5f shells
for aetinide impurities is a very delicate problem,
since the role of the d fhydridi-zation is not pre-
cisely known in transition-based alloys. How-
ever, neglecting their participation in the screen-
ing seems to be consistent with our analysis of.
experimental data. Since AZ ~ —2 for actinides,
h,p~d~ has to remain roughly constant because
nd is Rssumed to be constant along the series and

remains of older 1pp q
Rccordlng to ouI'

preceeding considerations. "
The constancy of h, p~d is checked by the experi-

mental variation of the hyperfine fields up to U,
which ls roughly pRI'Rllel to the curve I. This I e-
sult is consistent with only two contributions

p Rnd A p to the hyperf ine field in the case of
Ba, Th, and U; i.t leads to an estimation of h, p

"~

which is of order 3000 kQe and remains roughly
constant in the whole actinide series (curve II).
We deduce an empirical constant ed of order
3000p, 8

' kQe for the 6d series, in agreement
with its extrapolation from the other d series. "
We can also notice that changing slightly the A(Z)
value leaves unchanged the physical result of
the constancy of h,p~d~ and only changes the value
of

(iii) Since the experimental values for Np, Pu,
and Cm lie above the curve III, giving h, p +f2 p ",
it is necessary to invoke, for these special im-
purities, an extra, contribution to the hyperfine
field. The extra contribution is due to the oc-
currence of an f localized moment mz~') on these
impurities and can be written a,s

~ (y) o. ~ (0)
cp f f
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where n& is a positive constant.
The f magnetic moment has probably both spin

and orbital contributions in Np and Pu due to the
large spin-orbit coupling. Since the exchange
coupling between the d magnetic moment on the
impurity site and the f magnetic moment is posi-
tive ("ferromagnetic alignment" ), it follows from
(5) that h,~

~ is positive because rn~~'~ is negative.
This point is in agreement with the experimental
data of Np and Pu, which lie above the curve III.
Then, the deduced contributions h, ~~~~ are of
order 750 kQe for Np and 1500 kOe for Pu. We
can estimate nf by using experimental data in
good local-moment cases, such as NpC, "or UP,
USb, US,"where one knows both mf ' and h,p
The deduced nf value is of order 1500 to 2000 ', B

'
kOe, which seems a good value for the case of an
Fe matrix, because it leads to an f magnetic
moment of order 1p. & for Pu, in good agreement
with the other experimental results for Pu sys-
tems. For Np, we have to remember that the
measurements have been done in Ni. Since, for
rare earths h,~

~' is roughly 3-5 times smaller
in Ni than in Fe, ' ~& is probably of order 500@,&

'
kOe in Ni. Also, lm„' I for 3d impurities in Ni
is a little smaller than in Fe,"and extending
this result to our case would reinforce I &nf~'~

~

for Np. So, the resulting f magnetic moment for
Np is certainly near the 2 p, z value found in other
Np systems. We have to notice that our esti-
mated value for n&, larger than for the rare
earths, is consistent with a smaller localization
of the 5f electrons than of the 4f electrons.

The f magnetic moment has probably only a
spin contribution in the case of Cm, with a 5P
configuration as in pure metal case; therefore,
h,~

~ would also be positive. This is verified
by the experimental value of the hyperfine field,
which lies above the curve III. If we consider
more quantitatively the data of Falk et al. ', the
deduced value for h, ~

~ would be of order 1000
kOe. This value can be accounted for by (5) by
taking ef-150 kOe in ¹i,roughly 3 times smaller
here in a case of only a spin contribution than in
the case of both orbital and spin contributions as
in Ni:Np. We cannot be more precise quantitative-
ly this point, but the same qualitative behavior
is observed in the case of rare earths.

So, our analysis of the experimental hyperfine-
field data of actinides diluted in 3d ferromagnetic
hosts is consistent with no f magnetism for Ra,
Th, and U, with the occurrence of a spin and or-
bital f magnetic moment of order 2 ps for Np and
1p, ~ for Pu and with only a spin contribution to

the magentism of Cm.
Within the preceeding framework, we can point

out some predictions:
(I) For Np and Cm we can deduce that the hy-

perfine field measured in a Fe host would be
certainly larger than the experimental values re-
ported here. For Fe:Np it would be -2000—3000
kOe and for Fe:Cm it would be -2000-4000 kOe.

(2) If we assume that americium is nonmagnetic
in a ferromagnetic host, as it is observed either
in La:Am" or in pure Am metal, its hyperfine
field would lie on the curve III, i.e., of order
—1000 kOe.

(3) Berkelium and the following elements are
certainly magnetic with both spin and orbital con-
tributions. The orbital moment is parallel to the
spin in the second half of the series of actinides
as for rare earths, and leads to a negative and
very large (in absolute value) hyperfine field.

Finally, there is a theoretical point concerning
the connection between the magnetic moments in
the first, half of the series and the d fhybridi-za-
tion. "9 The more the d band is important, the
smaller the magnetic moments in Np and Pu
seem to be, and even the magnetism can com-
pletely disappear for a large d character as in
pure actinides. We can finally suggest a study of
the magnetic properties of actinide impurities in
a host which has no d character, in order to see
if the magnetic moments of plutonium and nep-
tunium are larger and also if even the uranium
impurity can become magnetic.

We would like to thank Dr. H. Bernas for point-
ing out the interest of the problem and for inter-
esting discussions.
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The transition strenth (h v)2e„computed by Kramers-Kronig analysis of optical reflec-
tance spectra, is compared with x-ray photoelectron spectra for both single-crystal and
amorphous Sb2Se3. The similarity of the data from x-ray photoelectron spectra for the
two modifications suggests that the valence-band structure is essentially the same,
whereas differences in the spectral dependence of (h v) e2 suggest that the conduction-band
density of states is lower in the amorphous material, or that the matrix elements for op-
tical transitions are suppressed.

As part of a study of the optical properties of
Sb,Se„we have compared the energy dependence
of the transition strength (hv)'~, with x-ray photo-
electron spectra (electron spectroscopy by chem-
ical analysis) for both the amorphous and orthor-
hombic crystalline (D»") modifications of the
same composition. The single crystals were pre-
pared in a horizontal zone refiner' and the amor-
phous films by vacuum evaporation' onto room-
temperature fused quartz for the optical reflec-
tance spectra, or aluminum substrates for the x-
ray photoelectron spectra (XPS). An electrically
conducting substrate of aluminum was used to

facilitate cleaning by sputtering. The films were
verified to be amorphous by x-ray diffraction.

Values for the function (hv)'e„where hv is the
photon energy, were calculated by Kramers-
Kronig analysis' of ref lectivity data from 0 to 24
eV' and are plotted in Fig. 1. The most striking
difference between the amorphous and single-
crystal curves is that the peak observed at -3 eV
for both polarizations of the electric light vector
for the. single crystal appears to be strongly de-
pressed for the amorphous material. This peak
and the next major one at -9 eV also are less
well resolved for the amorphous solid.
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